Processing math: 3%

拟齐次核的Hilbert型积分不等式的适配参数条件

曾志红, 洪勇, 张然然, 田德路

曾志红, 洪勇, 张然然, 田德路. 拟齐次核的Hilbert型积分不等式的适配参数条件[J]. 华南师范大学学报(自然科学版), 2021, 53(5): 108-112. DOI: 10.6054/j.jscnun.2021082
引用本文: 曾志红, 洪勇, 张然然, 田德路. 拟齐次核的Hilbert型积分不等式的适配参数条件[J]. 华南师范大学学报(自然科学版), 2021, 53(5): 108-112. DOI: 10.6054/j.jscnun.2021082
ZENG Zhihong, HONG Yong, ZHANG Ranran, TIAN Delu. The Adaptation Parameter Conditions for Hilbert-type Integral Inequalities with Quasi-homogeneous Kernels[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 108-112. DOI: 10.6054/j.jscnun.2021082
Citation: ZENG Zhihong, HONG Yong, ZHANG Ranran, TIAN Delu. The Adaptation Parameter Conditions for Hilbert-type Integral Inequalities with Quasi-homogeneous Kernels[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 108-112. DOI: 10.6054/j.jscnun.2021082

拟齐次核的Hilbert型积分不等式的适配参数条件

基金项目: 

国家自然科学基金项目 11801092

广东省普通高校特色创新类项目 2019KTSCX119

广州市科技计划项目 201804010088

详细信息
    通讯作者:

    曾志红,Email: zhz181@126.com

  • 中图分类号: O178

The Adaptation Parameter Conditions for Hilbert-type Integral Inequalities with Quasi-homogeneous Kernels

  • 摘要: 利用权系数方法和实分析技巧,讨论如何选取适配参数而获得具有最佳常数因子的拟齐次Hilbert型积分不等式,得到构建最佳拟齐次Hilbert型积分不等式的适配参数的充分必要条件,并得到最佳常数因子的表达式,从而解决了构建最佳Hilbert型积分不等式研究中的一个基本理论问题;最后讨论所得结论在求积分算子范数中的应用.
    Abstract: The weighting coefficient method and real analysis techniques are used to discuss how to select the adaptation parameters to obtain Hilbert-type integral inequalities with quasi-homogeneous kernel and the best constant factor. The necessary and sufficient conditions for the adaptation parameters for constructing the best Hilbert-type integral inequality with quasi-homogeneous kernel and the expression formula of the best constant factor are obtained. This solves a fundamental theoretical problem in the study of constructing optimal Hilbert-type integral inequalities. Finally, its applications to finding the norm of integration operators are discussed.
  • 1p+1q=1(p>1)α, βRK(x, y)非负可测,若Lαp(0,+)={f(x), 则称不等式

    \int_{0}^{+\infty} \int_{0}^{+\infty} K(x, y) f(x) g(y) \mathrm{d} x \mathrm{d} y \leqslant M\|f\|_{p, \alpha}\|g\|_{q, \beta}

    为Hilbert型积分不等式. 由于此类不等式与积分算子T

    T(f)(y)=\int_{0}^{+\infty} K(x, y) f(x) \mathrm{d} x

    有密切的联系,故而Hilbert型积分不等式对于研究算子T的有界性与算子范数有重要意义.

    1991年,XU和GAO[1]首次提出了研究Hilbert型不等式的权系数方法. 该方法的核心是:引入2个搭配参数ab,利用Hölder不等式,可得到如下形式的不等式:

    \begin{aligned} &\int_{0}^{+\infty} \int_{0}^{+\infty} K(x, y) f(x) g(y) \mathrm{d} x \mathrm{d} y \leqslant \\ &\quad W_{1}^{1 / p}(b, p) W_{2}^{1 / q}(a, q)\left(\int_{0}^{+\infty} x^{\alpha(a, b)} f^{p}(x) \mathrm{d} x\right)^{1 / p} \times \\ &\quad\left(\int_{0}^{+\infty} y^{\beta(a, b)} g^{q}(y) \mathrm{d} x\right)^{1 / q}. \end{aligned} (1)

    一般地,随意选取的搭配参数ab并不能使式(1)的常数因子W11/p(b, p)W21/q(a, q)最佳. 已有的相关研究[2-13]基本上都是凭借丰富的经验和娴熟的分析技巧选取适当的搭配参数ab,从而获得最佳的Hilbert型不等式.

    若选取的搭配参数ab能够使式(1)的常数因子最佳,则称其为适配参数或适配数. 文献[14]曾讨论了齐次核的Hilbert型级数不等式的适配参数问题,本文将对拟齐次核的Hilbert型积分不等式讨论搭配参数ab成为适配数的充分必要条件,并讨论其应用.

    G(u, v)是λ阶齐次函数,λ1λ2>0,则称K(x, y)=G(xλ1, yλ2)为拟齐次函数. 显然K(x, y)为拟齐次函数等价于:对t>0,有

    \begin{gathered} K(t x, y)=t^{\lambda_{1} \lambda} K\left(x, t^{-\lambda_{1} / \lambda_{2}} y\right), \\ K(x, t y)=t^{\lambda_{2} \lambda} K\left(t^{-\lambda_{2} / \lambda_{1}} x, y\right). \end{gathered}

    下面给出本文证明过程中所需的引理.

    引理1  设1/p+1/q=1 (p>1),a, b, λ\mathbb{R} λ1λ2>0,G(u, v)是λ阶齐次非负函数,K(x, y)=G(xλ1, yλ2),aq/λ1+bp/λ2=1/λ1+1/λ2+ λ,记

    \begin{gathered} W_{1}(b, p)=\int_{0}^{+\infty} K(1, t) t^{-b p} \mathrm{~d} t, \\ W_{2}(a, q)=\int_{0}^{+\infty} K(t, 1) t^{-a q} \mathrm{~d} t, \end{gathered}

    W1(b, p)/λ1=W2(a, q)/λ2,且

    \begin{aligned} &\omega_{1}(b, p, x)=\int_{0}^{+\infty} K(x, y) y^{-b p} \mathrm{~d} y=x^{\lambda_{1}\left(\lambda-b p / \lambda_{2}+1 / \lambda_{2}\right)} W_{1}(b, p), \\ &\omega_{2}(a, q, y)=\int_{0}^{+\infty} K(x, y) x^{-a q} \mathrm{~d} x=y^{\lambda_{2}\left(\lambda-a q / \lambda_{1}+1 / \lambda_{1}\right)} W_{2}(a, q) . \end{aligned}

    证明   由aq/λ1+bp/λ2=1/λ1+1/λ2+ λ,可得- λ1λ + λ1bp/λ2-λ1/λ2-1=-aq. 则有

    \begin{aligned} &W_{1}(b, p)=\int_{0}^{+\infty} t^{\lambda_{2} \lambda} K\left(t^{-\lambda_{2} / \lambda_{1}}, 1\right) t^{-b{p}} \mathrm{~d} t= \\ &\ \ \ \ \ \ \frac{\lambda_{1}}{\lambda_{2}} \int_{0}^{+\infty} K(u, 1) u^{-\lambda_{1} \lambda+\lambda_{1} b p / \lambda_{2}-\lambda_{1} / \lambda_{2}-1} \mathrm{~d} u= \\ &\ \ \ \ \ \ \frac{\lambda_{1}}{\lambda_{2}} \int_{0}^{+\infty} K(u, 1) u^{-a q} \mathrm{~d} u=\frac{\lambda_{1}}{\lambda_{2}} W_{2}(a, q), \end{aligned}

    W1(b, p)/λ1=W2(a, q)/λ2.

    作变换y=xλ1/λ2t,有

    \begin{aligned} &\omega_{1}(b, p, x)=\int_{0}^{+\infty} x^{\lambda_{1} \lambda} K\left(1, x^{-\lambda_{1} / \lambda_{2}} y\right) y^{-b p} \mathrm{~d} y= \\ &\ \ \ \ \ \ x^{\lambda_{1}\left(\lambda-b p / \lambda_{2}+1 / \lambda_{2}\right)} \int_{0}^{+\infty} K(1, t) t^{-b p} \mathrm{~d} t=\\ &\ \ \ \ \ \ x^{\lambda_{1}\left(\lambda-b p / \lambda_{2}+1 / \lambda_{2}\right)} W_{1}(b, p). \end{aligned}

    同理可证ω2(a, q, y)=yλ2(λaq/λ1+1/λ1)W2(a, q). 证毕.

    定理1   设1/p+1/q=1 (p>1),a, b, λ\mathbb{R} λ1λ2>0,G(u, v)是λ阶齐次非负可测函数,K(x, y)=G(xλ1, yλ2),W1(b, p)与W2(a, q)如引理1所定义. 那么

    (1) 若\alpha=\lambda_{1}\left[\lambda+\frac{1}{\lambda_{2}}+p\left(\frac{a}{\lambda_{1}}-\frac{b}{\lambda_{2}}\right)\right], \beta=\lambda_{2}\left[\lambda+\frac{1}{\lambda_{1}}+\right.\left.p\left(\frac{b}{\lambda_{2}}-\frac{a}{\lambda_{1}}\right)\right], 则有

    \begin{aligned} &\int_{0}^{+\infty} \int_{0}^{+\infty} K(x, y) f(x) g(y) \mathrm{d} x \mathrm{d} y \leqslant \\ &\quad W_{1}^{1 / p}(b, p) W_{2}^{1 / q}(a, q)\|f\|_{p, \alpha}\|g\|_{q, \beta}, \end{aligned} (2)

    其中, f(x) \in L_{p}^{\alpha}(0, +\infty), g(y) \in L_{q}^{\beta}(0, +\infty).

    (2) 式(2)中的常数因子W11/p(b, p)W21/q(a, q)是最佳的,当且仅当aq/λ1+bp/λ2=1/λ1+1/λ2+ λW1(b, p)和W2(a, q)都收敛. 当aq/λ1+bp/λ2=1/λ1+1/λ2+ λ时,式(2)化为

    \begin{aligned} &\int_{0}^{+\infty} \int_{0}^{+\infty} K(x, y) f(x) g(y) \mathrm{d} x \mathrm{d} y \leqslant \\ &\ \ \ \ \ \ \ \ \frac{W_{0}}{\left|\lambda_{1}\right|^{1 / q}\left|\lambda_{2}\right|^{1 / p}}\|f\|_{p, a p q-1}\|g\|_{q, b p q-1}, \end{aligned} (3)

    其中, W0=|λ1|W2(a, q)= |λ2|W1(b, p).

    证明  (i)选择ab为搭配参数. 根据Hölder不等式和引理1,利用权系数方法,有

    \begin{aligned} &\int_{0}^{+\infty} \int_{0}^{+\infty} K(x, y) f(x) g(y) \mathrm{d} x \mathrm{d} y= \\ &\qquad \int_{0}^{+\infty} \int_{0}^{+\infty}\left(\frac{x^{a}}{y^{b}} f(x)\right)\left(\frac{y^{b}}{x^{a}} g(y)\right) K(x, y) \mathrm{d} x \mathrm{d} y \leqslant \\ &\qquad \left(\int_{0}^{+\infty} \int_{0}^{+\infty} \frac{x^{a p}}{y^{b p}} f^{p}(x) K(x, y) \mathrm{d} x \mathrm{d} y\right)^{1 / p} \times \\ &\qquad \left(\int_{0}^{+\infty} \int_{0}^{+\infty} \frac{y^{b q}}{x^{a q}} g^{q}(y) K(x, y) \mathrm{d} x \mathrm{d} y\right)^{1 / q}=\\ &\qquad \left(\int_{0}^{+\infty} x^{a p} f^{p}(x) \omega_{1}(b, p, x) \mathrm{d} x\right)^{1 / p} \times \\ &\qquad \left(\int_{0}^{+\infty} y^{b q} g^{q}(y) \omega_{2}(a, q, y) \mathrm{d} y\right)^{1 / q}= \\ &\qquad W_{1}^{1 / p}(b, p) W_{2}^{1 / q}(a, q) \times \\ &\qquad \left(\int_{0}^{+\infty} x^{a p+\lambda_{1}\left(\lambda-b p / \lambda_{2}+1 / \lambda_{2}\right)} f^{p}(x) \mathrm{d} x\right)^{1 / p} \times \\ &\qquad \left(\int_{0}^{+\infty} y^{b q+\lambda_{2}\left(\lambda-a q / \lambda_{1}+1 / \lambda_{1}\right)} g^{q}(y) \mathrm{d} x\right)^{1 / q}= \\ &\qquad W_{1}^{1 / p}(b, p) W_{2}^{1 / q}(a, q)\|f\|_{p, \alpha}\|g\|_{q, \beta}, \end{aligned}

    故式(2)成立.

    (ii) 充分性:设aq/λ1+bp/λ2=1/λ1+1/λ2+ λW1(b, p)和W2(a, q)收敛. 由引理1,有W1(b, p)/λ1=W2(a, q)/λ2,故

    W_{1}^{1 / p}(b, p) W_{2}^{1 / q}(a, q)=\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{1 / q} W_{1}(b, p)=\frac{W_{0}}{\left|\lambda_{1}\right|^{1 / q}\left|\lambda_{2}\right|^{1 / p}},

    α=apq-1,β=bpq-1,于是式(2)可化为式(3).

    设式(3)的最佳常数因子为M0,则M0W0/(|λ11/q|λ2|1/p),且用M0取代式(3)中的常数因子后,式(3)仍然成立.

    取充分小的ε>0及δ>0,令

    \begin{aligned} f(x) =&\left\{\begin{array}{l} x^{\left(-a p q-\left|\lambda_{1}\right| \varepsilon\right) / p}\quad (x \geqslant 1), \\ 0 \quad (0<x<1); \end{array} \right.\\ g(y) = &\begin{cases}y^{\left(-b p q-\left|\lambda_{2}\right| \varepsilon\right) / q}\quad (y \geqslant \delta) ,\\ 0 \quad (0<y<\delta).\end{cases} \end{aligned}

    \begin{array}{c} \begin{aligned} &\|f\|_{p, a p q-1}\|g\|_{q, b p q-1}= \\ &\quad\left(\int_{1}^{+\infty} x^{-1-\left|\lambda_{1}\right| \varepsilon} \mathrm{d} x\right)^{1 / p}\left(\int_{\delta}^{+\infty} y^{-1-\left|\lambda_{2}\right| \varepsilon} \mathrm{d} y\right)^{1 / q}= \\ &\quad\left(\frac{1}{\left|\lambda_{1} \varepsilon\right|}\right)^{1 / p}\left(\frac{1}{\left|\lambda_{2}\right| \varepsilon} \delta^{-\left|\lambda_{2}\right| \varepsilon}\right)^{1 / q}= \\ &\quad\frac{1}{\varepsilon\left|\lambda_{1}\right|^{1 / p}\left|\lambda_{2}\right|^{1 / q}} \delta^{-\left|\lambda_{2}\right| \varepsilon / q}, \end{aligned}\\ \begin{aligned} &\int_{0}^{+\infty} \int_{0}^{+\infty} K(x, y) f(x) g(y) \mathrm{d} x \mathrm{d} y= \\ &\quad\int_{1}^{+\infty} x^{-a q-\left|\lambda_{1}\right| \varepsilon / p}\left(\int_{\delta}^{+\infty} y^{-b p-\left|\lambda_{2}\right| \varepsilon / q} K(x, y) \mathrm{d} y\right) \mathrm{d} x= \\ &\quad\int_{1}^{+\infty} x^{-a q-\left|\lambda_{1}\right| \varepsilon / p+\lambda \lambda_{1}}\left(\int_{\delta}^{+\infty} y^{-b p-\left|\lambda_{2}\right| \varepsilon / q} K\left(1, x^{-\lambda_{1} / \lambda_{2}} y\right) \mathrm{d} y\right) \mathrm{d} x= \\ &\quad\int_{1}^{+\infty} x^{-1-\left|\lambda_{1}\right| \varepsilon}\left(\int_{x^{-\lambda_{1} / \lambda_{2}} \delta}^{+\infty} t^{-b p-\left|\lambda_{2}\right| \varepsilon / q} K(1, t) \mathrm{d} t\right) \mathrm{d} x \geqslant \\ &\quad\int_{1}^{+\infty} x^{-1-\left|\lambda_{1}\right| \varepsilon}\left(\int_{\delta}^{+\infty} t^{-b p-\left|\lambda_{2}\right| \varepsilon / q} K(1, t) \mathrm{d} t\right) \mathrm{d} x= \\ &\quad\frac{1}{\left|\lambda_{1}\right| \varepsilon} \int_{\delta}^{+\infty} t^{-b p-\left|\lambda_{2}\right| \varepsilon / q} K(1, t) \mathrm{d} t. \end{aligned} \end{array}

    于是

    \frac{1}{\left|\lambda_{1}\right|} \int_{\delta}^{+\infty} t^{-b p-\left|\lambda_{2}\right| \varepsilon / q} K(1, t) \mathrm{d} t \leqslant \frac{M_{0}}{\left|\lambda_{1}\right|^{1 / p}\left|\lambda_{2}\right|^{1 / q}} \delta^{-\left|\lambda_{2}\right| \varepsilon / q}.

    先令ε→0+,再令δ→0+,得

    W_{1}(b, p)=\int_{0}^{+\infty} t^{-b p} K(1, t) \mathrm{d} t \leqslant \frac{M_{0}}{\left|\lambda_{1}\right|^{1 / p}\left|\lambda_{2}\right|^{1 / q}}.

    再根据引理1,可得到W0/(|λ1|1/q|λ2|1/p)≤M0. 所以式(3)的最佳常数因子M0=W0/(|λ1|1/q|λ2|1/p).

    必要性:设式(2)的常数因子W11/p(b, p)W21/q(a, q)是最佳的,则W1(b, p)和W2(a, q)是收敛的. 下证aq/λ1+bp/λ2=1/λ1+1/λ2+ λ.

    \frac{1}{\lambda_{1}} a q+\frac{1}{\lambda_{2}} b p-\left(\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\lambda\right)=c, a_{1}=a-\frac{\lambda_{1} c}{p q}, b_{1}=b-\frac{\lambda_{2} c}{p q},则

    \begin{gathered} \alpha=\lambda_{1}\left[\lambda+\frac{1}{\lambda_{2}}+p\left(\frac{a_{1}}{\lambda_{1}}-\frac{b_{1}}{\lambda_{2}}\right)\right]=\alpha_{1}, \\ \beta=\lambda_{2}\left[\lambda+\frac{1}{\lambda_{1}}+p\left(\frac{b_{1}}{\lambda_{2}}-\frac{a_{1}}{\lambda_{1}}\right)\right]=\beta_{1}, \\ W_{2}(a, q)=\int_{0}^{+\infty} K(t, 1) t^{-a q} \mathrm{~d} t=\frac{\lambda_{2}}{\lambda_{1}} \int_{0}^{+\infty} K(1, t) t^{-b p+\lambda_{2} c} \mathrm{~d} t . \end{gathered}

    于是可知式(2)等价于

    \begin{aligned} &\int_{0}^{+\infty} \int_{0}^{+\infty} K(x, y) f(x) g(y) \mathrm{d} x \mathrm{d} y \leqslant \\ &\quad W_{1}^{1 / p}(b, p)\left(\frac{\lambda_{2}}{\lambda_{1}} \int_{0}^{+\infty} K(1, t) t^{-b p+\lambda_{2} c} \mathrm{~d} t\right)^{1 / q}\|f\|_{p, \alpha_{1}}\|g\|_{q, \beta_{1}} . \end{aligned}

    又经计算有a1q/λ1+b1p/λ2=1/λ1+1/λ2+ λα1=a1pq-1,β1=b1pq-1,故式(2)进一步等价于

    \begin{aligned} &\int_{0}^{+\infty} \int_{0}^{+\infty} K(x, y) f(x) g(y) \mathrm{d} x \mathrm{d} y \leqslant \\ &\qquad W_{1}^{1 / p}(b, p)\left(\frac{\lambda_{2}}{\lambda_{1}} \int_{0}^{+\infty} K(1, t) t^{-b p+\lambda_{2} c} \mathrm{~d} t\right)^{1 / q} \times \\ &\qquad\|f\|_{p, a_{1} p q-1}\|g\|_{q, b_{1} p q-1} . \end{aligned} (4)

    根据假设,式(4)的最佳常数因子是W11/p(b, p{\left({\frac{{{\lambda _2}}}{{{\lambda _1}}}\int_0^{ + \infty } K (1, t){t^{ - bp + {\lambda _2}c}}{\rm{d}}t} \right)^{1/q}}. 又由\frac{1}{{{\lambda _1}}}{a_1}q + \frac{1}{{{\lambda _2}}}{b_1}p = \frac{1}{{{\lambda _1}}} + \frac{1}{{{\lambda _2}}} + \lambda 及充分性的证明,可知式(4)的最佳常数因子为

    \begin{gathered} \frac{1}{\left|\lambda_{1}\right|^{1 / q}\left|\lambda_{2}\right|^{1 / p}}\left(\left|\lambda_{2}\right| \int_{0}^{+\infty} K(1, t) t^{-b_{1} p} \mathrm{~d} t\right)= \\ \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{1 / q} \int_{0}^{+\infty} K(1, t) t^{-b p+\lambda_{2} c / q} \mathrm{~d} t \end{gathered}

    于是得到

    \begin{aligned} &\int_{0}^{+\infty} K(1, t) t^{-b p+\lambda_{2} c / q} \mathrm{~d} t= \\ &\quad W_{1}^{1 / p}(b, p)\left(\int_{0}^{+\infty} K(1, t) t^{-b p+\lambda_{2} c} \mathrm{~d} t\right)^{1 / q}. \end{aligned} (5)

    对于1和tλ2c/q,应用Hölder不等式,有

    \begin{aligned} &\int_{0}^{+\infty} K(1, t) t^{-b p+\lambda_{2} c / q} \mathrm{~d} t=\int_{0}^{+\infty} t^{\lambda_{2} c / q} K(1, t) t^{-b p} \mathrm{~d} t \leqslant \\ &\qquad\left(\int_{0}^{+\infty} 1^{p} K(1, t) t^{-b p} \mathrm{~d} t\right)^{1 / p}\left(\int_{0}^{+\infty} t^{\lambda_{2} c} K(1, t) t^{-b p} \mathrm{~d} t\right)^{1 / q}= \\ &\qquad W_{1}^{1 / p}(b, p)\left(\int_{0}^{+\infty} K(1, t) t^{-b p+\lambda_{2} c} \mathrm{~d} t\right)^{1 / q}. \end{aligned} (6)

    根据式(5),可知式(6)取等号. 又根据Hölder不等式取等号的条件,可得tλ2c/q=常数,故c=0,即aq/λ1+bp/λ2=1/λ1+1/λ2+ λ1. 证毕.

    注1   定理1表明: 当且仅当aq/λ1+bp/λ2=1/λ1+1/λ2+ λ时,搭配参数ab是适配参数. 因此,只要选取ab满足aq/λ1+bp/λ2=1/λ1+1/λ2+ λ,就可以得到各种各样的具有最佳常数因子的Hilbert型积分不等式.

    推论1  设1/p+1/q=1 (p>1),λ1λ2>0,λ >0,1/r+1/s=1 (r>1),α=p(1- λλ1/r)-1,β=q(1- λλ2/s)-1,则

    \begin{aligned} &\int_{0}^{+\infty} \int_{0}^{+\infty} \frac{f(x) g(y)}{\left(x^{\lambda_{1}}+y^{\lambda_{2}}\right)^{\lambda}} \mathrm{d} x \mathrm{d} y \leqslant \\ &\qquad\frac{1}{\left|\lambda_{1}\right|^{1 / q}\left|\lambda_{2}\right|^{1 / p}} \mathrm{~B}\left(\frac{\lambda}{r}, \frac{\lambda}{s}\right)\|f\|_{p, \alpha}\|g\|_{q, \beta}, \end{aligned} (7)

    其中的常数因子是最佳的,f(x)∈Lpα(0, +∞),g(y)∈Lqβ(0, +∞).

    证明  记K(x, y)=G(xλ1, yλ2)=1/(xλ1+yλ2)λ,则G(u, v)是-λ阶齐次非负函数. 选取搭配参数a=\frac{1}{q}\left(1-\frac{\lambda \lambda_{1}}{r}\right), b=\frac{1}{p}\left(1-\frac{\lambda \lambda_{2}}{s}\right), 可得

    \frac{1}{\lambda_{1}} a q+\frac{1}{\lambda_{2}} b p=\frac{1}{\lambda_{1}}\left(1-\frac{\lambda \lambda_{1}}{r}\right)+\frac{1}{\lambda_{2}}\left(1-\frac{\lambda \lambda_{2}}{s}\right)=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}-\lambda,

    ab是适配参数. 又因为apq-1=p(1- λλ1/r)-1=αbpq-1=q(1- λλ2/s)-1=β,且

    \begin{aligned} W_{0}=&\left|\lambda_{2}\right| W_{1}(b, p)=\left|\lambda_{2}\right| \int_{0}^{+\infty} \frac{1}{\left(1+t^{\lambda_{2}}\right)^{\lambda}} t^{\lambda \lambda_{2} / s-1} \mathrm{~d} t=\\ & \int_{0}^{+\infty} \frac{1}{(1+u)^{\lambda}} u^{\lambda / s-1} \mathrm{~d} u=\mathrm{B}\left(\frac{\lambda}{s}, \lambda-\frac{\lambda}{s}\right)=\mathrm{B}\left(\frac{\lambda}{r}, \frac{\lambda}{s}\right). \end{aligned}

    根据定理1,式(7)成立,且其常数因子是最佳的. 证毕.

    根据Hilbert型不等式与相应积分算子的关系理论,由定理1可得如下定理.

    定理2   设1/p+1/q=1 (p>1),a, b, λ\mathbb{R} λ1λ2>0,α=apq-1,β=bpq-1,G(u, v)是λ阶齐次非负可测函数,K(x, y)=G(xλ1, yλ2),且

    \begin{aligned} &W_{1}(b, p)=\int_{0}^{+\infty} K(1, t) t^{-b p} \mathrm{~d} t<+\infty, \\ &W_{2}(a, q)=\int_{0}^{+\infty} K(t, 1) t^{-a q} \mathrm{~d} t<+\infty, \end{aligned}

    则当aq/λ1+bp/λ2=1/λ1+1/λ2+ λ时,积分算子T

    T(f)(y)=\int_{0}^{+\infty} K(x, y) f(x) \mathrm{d} x, f(x) \in L_{p}^{\alpha}(0,+\infty)

    是从Lpα(0, +∞)到Lpβ(1-p)(0, +∞)的有界算子,且T的算子范数为

    \|T\|=\frac{\left|\lambda_{2}\right| W_{1}(b, p)}{\left|\lambda_{1}\right|^{1 / q}\left|\lambda_{2}\right|^{1 / p}}=\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{1 / q} \int_{0}^{+\infty} K(1, t) t^{-b p} \mathrm{~d} t.

    推论2  设1/p+1/q=1 (p>1),λ1λ2>0,-1 < λ < min{1±4/λ1, 1±4/λ2},α=p[1+ λ1(λ -1)/2]-1,β=p[1+ λ2(λ -1)/2]-1,则积分算子T

    T(f)(y)=\int_{0}^{+\infty} \frac{\left|x^{\lambda_{1}}-y^{\lambda_{2}}\right|^{\lambda}}{\max \left\{x^{\lambda_{1}}, y^{\lambda_{2}}\right\}} f(x) \mathrm{d} x, f(x) \in L_{p}^{\alpha}(0,+\infty)

    是从Lpα(0, +∞)到Lpβ(1-p)(0, +∞)的有界算子,且T的算子范数为

    \begin{aligned} &\|T\|=\frac{1}{\left|\lambda_{1}\right|^{1 / q}\left|\lambda_{2}\right|^{1 / p}}\left[\mathrm{~B}\left(\lambda+1, \frac{1-\lambda}{2}-\frac{2}{\lambda_{2}}\right)+\right. \\ &\ \ \ \ \ \ \left.\mathrm{B}\left(\lambda+1, \frac{1-\lambda}{2}+\frac{2}{\lambda_{2}}\right)\right] . \end{aligned}

    证明  记K(x, y)=G(xλ1, yλ2)= |xλ1yλ2|λ/max{xλ1, yλ2},则G(u, v)是λ -1阶齐次函数. 取a= \frac{1}{q}\left[1+\frac{\lambda_{1}}{2}(\lambda-1)\right], b=\frac{1}{p}\left[1+\frac{\lambda_{2}}{2}(\lambda-1)\right],则

    \begin{aligned} &\frac{1}{\lambda_{1}} a q+\frac{1}{\lambda_{2}} b p=\frac{1}{\lambda_{1}}\left[1+\frac{\lambda_{1}}{2}(\lambda-1)\right]+\frac{1}{\lambda_{2}}\left[1+\frac{\lambda_{2}}{2}(\lambda-1)\right]= \\ &\ \ \ \ \ \ \frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\lambda-1, \end{aligned}

    ab是适配参数. 又a p q-1=p\left[1+\frac{\lambda_{1}}{2}(\lambda-1)\right]-1=\alphab p q-1=q\left[1+\frac{\lambda_{2}}{2}(\lambda-1)\right]-1=\beta. 则

    \begin{aligned} &\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{1 / q} \int_{0}^{+\infty} K(1, t) t^{-b p} \mathrm{~d} t= \\ &\qquad\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{1 / q} \int_{0}^{+\infty} \frac{\left|1-t^{\lambda_{2}}\right|^{\lambda}}{\max \left\{1, t^{\lambda_{2}}\right\}} t^{-\left[1+\lambda_{2}(\lambda-1) / 2\right]} \mathrm{d} t= \\ &\qquad\frac{1}{\left|\lambda_{1}\right|^{1 / q}\left|\lambda_{2}\right|^{1 / p}}\left[\mathrm{~B}\left(\lambda+1, \frac{1-\lambda}{2}-\frac{2}{\lambda_{2}}\right)+\right. \\ &\qquad\left.\mathrm{B}\left(\lambda+1, \frac{1-\lambda}{2}+\frac{2}{\lambda_{2}}\right)\right]<+\infty . \end{aligned}

    根据定理2,知推论2成立. 证毕.

    推论3   设1/p+1/q=1 (p>1),1/r+1/s=1 (r>1),λ1λ2>0,α=p(1- λ1/r)-1,β=q(1- λ2/s)-1. 则积分算子T

    T(f)(y)=\int_{0}^{+\infty} \frac{\ln \left(x^{\lambda_{1}} / y^{\lambda_{2}}\right)}{x^{\lambda_{1}}-y^{\lambda_{2}}} f(x) \mathrm{d} x, f(x) \in L_{p}^{\alpha}(0,+\infty)

    是从Lpα(0, +∞)到Lpβ(1-p)(0, +∞)的有界算子,且T的算子范数为

    \|T\|=\frac{1}{\left|\lambda_{1}\right|^{1 / q}\left|\lambda_{2}\right|^{1 / p}}\left[\zeta\left(2, \frac{1}{r}\right)+\zeta\left(2, \frac{1}{s}\right)\right],

    其中ζ(t, a)是Riemann函数.

    证明  记

    K(x, y)=G\left(x^{\lambda_{1}}, y^{\lambda_{2}}\right)=\frac{\ln \left(x^{\lambda_{1}} / y^{\lambda_{2}}\right)}{x^{\lambda_{1}}-y^{\lambda_{2}}},

    G(u, v)是-1阶齐次非负函数.

    取搭配参数a=\frac{1}{q}\left(1-\frac{\lambda_{1}}{r}\right), b=\frac{1}{p}\left(1-\frac{\lambda_{2}}{s}\right),则

    \frac{1}{\lambda_{1}} a q+\frac{1}{\lambda_{2}} b p=\frac{1}{\lambda_{1}}\left(1-\frac{\lambda_{1}}{r}\right)+\frac{1}{\lambda_{2}}\left(1-\frac{\lambda_{2}}{s}\right)=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}-1,

    ab是适配参数. 又apq-1=p(1- λ1/r)-1=αbpq-1=q(1- λ2/s)-1=β,且

    \begin{gathered} \left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{1 / q} \int_{0}^{+\infty} K(1, t) t^{-b p} \mathrm{~d} t=\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{1 / q} \int_{0}^{+\infty} \frac{\ln \left(t^{-\lambda_{2}}\right)}{1-t^{\lambda_{2}}} t^{\lambda_{2} / s-1} \mathrm{~d} t= \\ \frac{1}{\left|\lambda_{1}\right|^{1 / q}\left|\lambda_{2}\right|^{1 / p}}\left[\zeta\left(2, \frac{1}{r}\right)+\zeta\left(2, \frac{1}{s}\right)\right]<+\infty \end{gathered}

    根据定理2,知推论3成立. 证毕.

  • [1]

    XU L Z, GAO Y K. Note on Hardy-Riesz's extension of Hilbert's inequality[J]. Chinese Quarterly Journal Mathematics, 1991, 6(1): 75-77. http://www.researchgate.net/publication/285632835_Note_on_Hardy-Riesz's_extension_of_Hilbert's_inequality

    [2]

    KUANG J C. On new extensions of Hilbert's integral inequality[J]. Journal of Mathematical Analysis and Applications, 1999, 235: 68-614. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.626.1178&rep=rep1&type=pdf

    [3]

    YANG B C. On new generalizations of Hilbert's inequality[J]. Journal of Mathematical Analysis and Applications, 2000, 284: 29-40. http://www.sciencedirect.com/science/article/pii/S0022247X00967660

    [4] 洪勇. 关于零阶齐次核的Hardy-Hilbert型不等式[J]. 浙江大学学报(理学版), 2013, 40(1): 15-18. doi: 10.3785/j.issn.1008-9497.2013.01.004

    HONG Y. On Hardy-Hilbert type integral inequality with homogeneous kernel of 0-degree[J]. Journal of Zhejiang University(Science Edition), 2013, 40(1): 15-18. doi: 10.3785/j.issn.1008-9497.2013.01.004

    [5] 杨必成. 一个新的Hilbert型不等式及其推广[J]. 吉林大学学报(理学版), 2005, 43(5): 580-584. doi: 10.3321/j.issn:1671-5489.2005.05.005

    YANG B C. A new Hilbert-type integral inequality and its generalization[J]. Journal of Jilin University (Science Edition), 2005, 43(5): 580-584. doi: 10.3321/j.issn:1671-5489.2005.05.005

    [6] 高明哲. 关于Hardy-Riesz拓广的Hilbert不等式的一个改进[J]. 数学研究与评论, 1994, 14(2): 255-259. https://www.cnki.com.cn/Article/CJFDTOTAL-SXYJ402.019.htm

    GAO M Z. An improvement of Hardy-Riesz's extension of the Hilbert inequality[J]. Journal of Mathematical Research and Exposition, 1994, 14(2): 255-259. https://www.cnki.com.cn/Article/CJFDTOTAL-SXYJ402.019.htm

    [7]

    BRNETIC I, PECARIC J. Generalization of inequality of Hardy-Hilbert's type[J]. Mathematical Inequalities & Applications, 2004, 7(2): 217-225. http://pdfs.semanticscholar.org/95a9/60bd4b071be53053e7ed0cbfee7fbc9c51cb.pdf

    [8] 杨必成. 关于一个推广的Hardy-Hilbert不等式[J]. 数学年刊, 2002, 23A(2): 247-254. doi: 10.3321/j.issn:1000-8134.2002.02.014

    YANG B C. On an extension of Hardy-Hilbert's inequality[J]. Chinese Annals of Mathematics, 2002, 23A(2): 247-254. doi: 10.3321/j.issn:1000-8134.2002.02.014

    [9]

    MICHAEL T R, YANG B C. On a Hilbert-type integral inequality in the plane relate to the extended Riemann zeta function[J/OL]. Complex Analysis and Operator Theory, (2008-08-10)[2020-03-20]. http://doi.org/10.1007/s11785-018-0830-5.

    [10]

    KRNIĆ M, VUKOVIĆ P. On a multidimensional version of the Hilbert-type inequality[J]. Analysis Mathematical, 2012, 38: 291-303. doi: 10.1007/s10476-012-0402-2

    [11] 钟建华, 陈强. 一个反向和齐次半离散的Hilbert型不等式[J]. 华南师范大学学报(自然科学版), 2013, 45(3): 28-32. http://journal-n.scnu.edu.cn/article/id/3152

    ZHONG J H, CHEN Q. A reverse and homogeneous half- discrete Hilbert-type inequality[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(3): 28-32. http://journal-n.scnu.edu.cn/article/id/3152

    [12] 王爱珍, 杨必成. 一个联系指数函数中间变量的全平面Hilbert积分不等式[J]. 兰州理工大学学报, 2019, 45(4): 151-155. doi: 10.3969/j.issn.1673-5196.2019.04.027

    WANG A Z, YANG B C. A full-planar Hilbert integral inequality related to middle-variable of exponential function[J]. Journal of Lanzhou of Technology, 2019, 45(4): 151-155. doi: 10.3969/j.issn.1673-5196.2019.04.027

    [13] 曾志红, 杨必成. 关于一个参量化的全平面Hilbert积分不等式[J]. 华南师范大学学报(自然科学版), 2017, 49(5): 100-103. http://journal-n.scnu.edu.cn/article/id/4193

    ZENG Z H, YANG B C. A parametric Hilbert's integral inequality in the whole plane[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(5): 100-103. http://journal-n.scnu.edu.cn/article/id/4193

    [14] 洪勇, 温雅敏. 齐次核的Hilbert型级数不等式取最佳常数因子的充分必要条件[J]. 数学年刊, 2016, 37A(3): 329-336.

    HONG Y, WEN Y M. A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor[J]. Chinese Annals of Mathematics, 2016, 37A(3): 329-336.

  • 期刊类型引用(1)

    1. 洪勇. 加指数权Lebesgue空间超齐次核积分算子搭配参数最佳的充要条件. 浙江大学学报(理学版). 2024(05): 586-592 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  278
  • HTML全文浏览量:  122
  • PDF下载量:  47
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-11-29
  • 网络出版日期:  2021-11-10
  • 刊出日期:  2021-10-24

目录

/

返回文章
返回