• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LI Xibao, ZHANG Jiasu, ZHOU Pengkang, GAO Yingmiao, CHEN Chunmiao, GAO Caiji, YANG Chao, SHEN Wenjin. The Role of Autophagy in the Germination of Arabidopsis thaliana Seeds[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 74-81. DOI: 10.6054/j.jscnun.2022060
Citation: LI Xibao, ZHANG Jiasu, ZHOU Pengkang, GAO Yingmiao, CHEN Chunmiao, GAO Caiji, YANG Chao, SHEN Wenjin. The Role of Autophagy in the Germination of Arabidopsis thaliana Seeds[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 74-81. DOI: 10.6054/j.jscnun.2022060

The Role of Autophagy in the Germination of Arabidopsis thaliana Seeds

More Information
  • Received Date: July 30, 2021
  • Available Online: September 21, 2022
  • Autophagy plays an important role in plant growth and development, but the relationship between autophagy and seed germination is not clear. Gene expression analysis, western blotting assay and seed germination rate assay were performed to explore the effect of autophagy on the germination of Arabidopsis thaliana seeds. The main experimental results are as follows. The expression of autophagy genes was significantly up-regulated and ATG8 proteins were gradually accumulated during seed germination, indicating that autophagy was activated in the process. Autophagy inhibitor 3-methyladenine (3-MA) could significantly inhibit seed germination of wild-type Arabidopsis thaliana, and in the normal condition, autophagy mutants had a slower seed germination rate than wild-type Arabidopsis thaliana, indicating that the autophagy pathway was involved in seed germination but not indispensable.
  • [1]
    MARSHALL R S, VIERSTRA R D. Autophagy: the master of bulk and selective recycling[J]. Annual Review of Plant Biology, 2018, 69: 173-208. doi: 10.1146/annurev-arplant-042817-040606
    [2]
    CHEN L, LIAO B, QI H, et al. Autophagy contributes to regulation of the hypoxia response during submergence in Arabidopsis thaliana[J]. Autophagy, 2015, 11: 2233-2246. doi: 10.1080/15548627.2015.1112483
    [3]
    CHI C, LI X M, FANG P P, et al. Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato[J]. Journal of Experimental Botany, 2020, 71: 1092-1106. doi: 10.1093/jxb/erz466
    [4]
    LUO L M, ZHANG P P, ZHU R H, et al. Autophagy is rapidly induced by salt stress and is required for salt tole-rance in Arabidopsis[J]. Frontiers in Plant Science, 2017, 8: 1459/1-13.
    [5]
    RODRIGUEZ E, CHEVALIER J, OLSEN J, et al. Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells[J]. EMBO Journal, 2020, 39: e103315/1-11.
    [6]
    SEDAGHATMEHR M, THIRUMALAIKUMAR V P, KAMRANFAR I, et al. A regulatory role of autophagy for resetting the memory of heat stress in plants[J]. Plant Cell and Environment, 2019, 42: 1054-1064. doi: 10.1111/pce.13426
    [7]
    WANG Y, CAO J J, WANG K X, et al. BZR1 mediates brassinosteroid-induced autophagy and nitrogen starvation in tomato[J]. Plant Physiology, 2019, 179: 671-685. doi: 10.1104/pp.18.01028
    [8]
    XIONG Y, CONTENTO A L, NGUYEN P Q, et al. Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis[J]. Plant Physiology, 2007, 143: 291-299. doi: 10.1104/pp.106.092106
    [9]
    YANG C, SHEN W J, YANG L M, et al. HY5-HDA9 module transcriptionally regulates plant autophagy in response to light-to-dark conversion and nitrogen starvation[J]. Molecular Plant, 2020, 13: 515-531. doi: 10.1016/j.molp.2020.02.011
    [10]
    ZHOU J, WANG J, YU J Q, et al. Role and regulation of autophagy in heat stress responses of tomato plants[J]. Frontiers in Plant Science, 2014, 5: 174/1-12.
    [11]
    SIGNORELLI S, TARKOWSKI L P, VAN DEN ENDE W, et al. Linking autophagy to abiotic and biotic stress responses[J]. Trends in Plant Science, 2019, 24: 413-430. doi: 10.1016/j.tplants.2019.02.001
    [12]
    AVIN-WITTENBERG T. Autophagy and its role in plant abiotic stress management[J]. Plant Cell and Environment, 2019, 42: 1045-1053. doi: 10.1111/pce.13404
    [13]
    HANAOKA H, NODA T, SHIRANO Y, et al. Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene[J]. Plant Physiology, 2002, 129: 1181-1193. doi: 10.1104/pp.011024
    [14]
    FUJIKI Y, YOSHIMOTO K, OHSUMI Y. An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination[J]. Plant Physiology, 2007, 143: 1132-1139. doi: 10.1104/pp.106.093864
    [15]
    QIN G J, MA Z Q, ZHANG L, et al. Arabidopsis AtBECLIN 1/AtAtg6/AtVps30 is essential for pollen germination and plant development[J]. Cell Research, 2007, 17: 249-263. doi: 10.1038/cr.2007.7
    [16]
    HARRISON-LOWE N J, OLSEN L J. Autophagy protein 6 (ATG6) is required for pollen germination in Arabidopsis thaliana[J]. Autophagy, 2008, 4: 339-348. doi: 10.4161/auto.5629
    [17]
    LI F, CHUNG T, VIERSTRA R D. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis[J]. Plant Cell, 2014, 26: 788-807. doi: 10.1105/tpc.113.120014
    [18]
    MININA E A, MOSCHOU P N, VETUKURI R R, et al. Transcriptional stimulation of rate-limiting components of the autophagic pathway improves plant fitness[J]. Journal of Experimental Botany, 2018, 69: 1415-1432. doi: 10.1093/jxb/ery010
    [19]
    LI F, CHUNG T, PENNINGTON J G, et al. Autophagic recycling plays a central role in maize nitrogen remobilization[J]. Plant Cell, 2015, 27: 1389-1408. doi: 10.1105/tpc.15.00158
    [20]
    DI BERARDINO J, MARMAGNE A, BERGER A, et al. Autophagy controls resource allocation and protein storage accumulation in Arabidopsis seeds[J]. Journal of Experimental Botany, 2018, 69: 1403-1414. doi: 10.1093/jxb/ery012
    [21]
    ZHAO P, ZHOU X M, ZHAO L L, et al. Autophagy-mediated compartmental cytoplasmic deletion is essential for tobacco pollen germination and male fertility[J]. Autophagy, 2020, 16: 2180-2192. doi: 10.1080/15548627.2020.1719722
    [22]
    WEITBRECHT K, MULLER K, LEUBNER-METZGER G. First off the mark: early seed germination[J]. Journal of Experimental Botany, 2011, 62: 3289-3309. doi: 10.1093/jxb/err030
    [23]
    KIMURA M, NAMBARA E. Stored and neosynthesized mRNA in Arabidopsis seeds: effects of cycloheximide and controlled deterioration treatment on the resumption of transcription during imbibition[J]. Plant Molecular Biology, 2010, 73: 119-129. doi: 10.1007/s11103-010-9603-x
    [24]
    LINKIES A, MULLER K, MORRIS K, et al. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana[J]. Plant Cell, 2009, 21: 3803-3822.
    [25]
    HOLDSWORTH M J, BENTSINK L, SOPPE W J J. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination[J]. New Phytologist, 2008, 179: 33-54. doi: 10.1111/j.1469-8137.2008.02437.x
    [26]
    KUCERA B, COHN M A, LEUBNER-METZGER G. Plant hormone interactions during seed dormancy release and germination[J]. Seed Science Research, 2005, 4: 281-307.
    [27]
    NORTH H, BAUD S, DEBEAUJON I, et al. Arabidopsis seed secrets unravelled after a decade of genetic and omics-driven research[J]. Plant Journal, 2010, 61: 971-981. doi: 10.1111/j.1365-313X.2009.04095.x
    [28]
    WU Y T, TAN H L, SHUI G, et al. Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class Ⅰ and Ⅲ phosphoinositide 3-kinase[J]. Journal of Biological Chemistry, 2010, 285: 10850-10861. doi: 10.1074/jbc.M109.080796
    [29]
    HUANG Y L, CHENG S L, LIN T H. Lipid peroxidation in rats administrated with mercuric chloride[J]. Biological Trace Element Research, 1996, 52: 193-206. doi: 10.1007/BF02789461
    [30]
    KELLY A A, QUETTIER A L, SHAW E, et al. Seed sto-rage oil mobilization is important but not essential for germination or seedling establishment in Arabidopsis[J]. Plant Physiology, 2011, 157: 866-875. doi: 10.1104/pp.111.181784
    [31]
    HAN B, XU H, FENG Y T, et al. Genomic characterization and expressional profiles of autophagy-related genes(ATGs) in oilseed crop castor bean (Ricinus communis L. )[J]. International Journal of Molecular Sciences, 2020, 21: 562/1-15. doi: 10.3390/ijms21165621
    [32]
    FAN T, YANG W, ZENG X, et al. A rice autophagy gene OsATG8b is involved in nitrogen remobilization and control of grain quality[J]. Frontiers in Plant Science, 2020, 11: 588/1-15.
    [33]
    KÖRNER M. Identifizierung und erste Charakterisierung einer neuen Triacylglyceridlipase-Familie aus Arabidopsis thaliana[D]. Halle(Saale), Saxony-Anhalt, Germany: Martin-Luther-Universität Halle-Wittenberg, 2005.
    [34]
    SHU K, QI Y, CHEN F, et al. Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis[J]. Frontiers in Plant Science, 2017, 8: 1372/1-12.
  • Related Articles

    [1]LI Hongyan, ZHAO Sihan, MEI Xianyun, CHEN Zheng, LI Xuguang, SUN Fangyun. The Effect of Nardosinone on Hypoxic Injury of H9C2 Cardiomyocytes and Its Mechanism[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 51-58. DOI: 10.6054/j.jscnun.2021026
    [2]Reyimaiayi·ABUDOUAINI, CHEN Jing, CHEN Yun, MA Liufeng. Transcriptome Analysis and Salt Tolerance Gene Screening of Cotton Root Under Salt Stress[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 85-92. DOI: 10.6054/j.jscnun.2020081
    [3]FANG Guizhen, HU Lixin, HUANG Guoyong, ZHAO Jianliang, YING Guangguo. The Application of Gene Recombinant Luminescent Bacteria to Environmental Sample Toxicity Test[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 60-67. DOI: 10.6054/j.jscnun.2020028
    [4]YAO Q, XIE B Z, PEI Y H. Synthesis of Poly (ethylene glycol)-g-Polyethyleneimine-supported Superparamagnetic Iron(IV) Oxide nanoparticles and Its Application in Gene Delivery[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(6): 48-53. DOI: 10.6054/j.jscnun.2018116
    [5]WU Qianqian, HU Minlun, ZHONG Yun, YAN Huaxue, JIANG Bo, WU Bo, ZHONG Guangyan, GAO Feng. Construction of Mi Gene Over-Expression Vector and 16D10 Gene RNAi Vector and Their Transformation[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(4): 68-73. DOI: 10.6054/j.jscnun.2018079
    [6]HE L K, ZHANG M, LIU Y S, HE L Y, YING G G. Dynamics of Antibiotic Resistance Genes in Soil Chronically Fertilized by Swine Manure[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(1): 1-10. DOI: 10.6054/j.jscnun.2018009
    [7]LIN Qin, XUE Yun, LIN Sida, HE Mingqing. Research and Application of Multi-Objective Artificial Bee Colony Biclustering in Gene Expression Data[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(2): 116-123. DOI: 10.6054/j.jscnun.2015.11.003
    [8]Chen Lili, Guo Wuxia, Pan Ting, Liu Xiaoru, Cao Mengyan, Wang Yaqin, Liang Shan*. Cloning and Expression Analysis of the DnMSI1Like Gene in Orchid Dendrobium Nobile Lindl.[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(2): 96-101. DOI: 10.6054/j.jscnun.2014.12.024
    [9]IDENTIFICATION AND FUNCTION ANALYSIS OF THE SILIQUE ANGLE GENE SPA IN ARABIDOPSIS[J]. Journal of South China Normal University (Natural Science Edition), 2012, 44(3). DOI: 10.6054/j.jscnun.2012.06.023
    [10]CLONING AND SEQUENCE ANALYSIS OF SIZ1 GENE IN DENDROBIUM[J]. Journal of South China Normal University (Natural Science Edition), 2011, 0(2).
  • Cited by

    Periodical cited type(1)

    1. 苏仙桃,杨浩,张曼. ClO~-识别的稀土荧光探针的合成及性能研究. 赤峰学院学报(自然科学版). 2021(12): 10-14 .

    Other cited types(1)

Catalog

    Article views (568) PDF downloads (142) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return