• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
Reyimaiayi·ABUDOUAINI, CHEN Jing, CHEN Yun, MA Liufeng. Transcriptome Analysis and Salt Tolerance Gene Screening of Cotton Root Under Salt Stress[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 85-92. DOI: 10.6054/j.jscnun.2020081
Citation: Reyimaiayi·ABUDOUAINI, CHEN Jing, CHEN Yun, MA Liufeng. Transcriptome Analysis and Salt Tolerance Gene Screening of Cotton Root Under Salt Stress[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 85-92. DOI: 10.6054/j.jscnun.2020081

Transcriptome Analysis and Salt Tolerance Gene Screening of Cotton Root Under Salt Stress

More Information
  • Received Date: April 30, 2020
  • Available Online: November 02, 2020
  • Cotton is one of the most important economic crops in China, especially in Xinjiang. However, in the process of cotton production, it is often subject to salinity stress, which is an important environmental limiting factor, for the growth and development of cotton. A cotton cultivar named xinluzhong No. 69, with strong tolerance to salt stress, was screened from 4 main cotton cultivars in Xinjiang, to reveal the molecular mechanism of cotton salt tolerance. The results of transcriptome analysis showed that 891 genes were up-regulated and 666 genes were down-regulated in cotton roots. The results of GO enrichment analysis showed that the majority of differentially expressed genes were concentrated in molecular functions, cellular components and biological processes. KEGG analysis showed that the differentially expressed genes were mainly involved in lignin biosynthesis and plant MAPK signaling pathway.
  • [1]
    王芳芳, 吴世新, 乔木, 等.基于3S技术的新疆耕地盐渍化状况调查与分析[J].干旱区研究, 2009(3):70-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqyj200903011

    WANG F F, WU S X, QIAO M, et al. Investigation and analysis on the salinization degree of cultivatedland in Xinjiang based on 3S technology[J]. Arid Zone Research, 2009(3):70-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ghqyj200903011
    [2]
    ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(1):247-273. doi: 10.1146/annurev.arplant.53.091401.143329
    [3]
    MOROZOVA O, MARRA M A. Applications of next-generation sequencing technologies in functional genomics[J]. Genomics, 2008, 92(5):255-264. doi: 10.1016/j.ygeno.2008.07.001
    [4]
    LIU A, XIAO Z, LI M W, et al. Transcriptomic reprogramming in soybean seedlings under salt stress[J]. Plant Cell and Environment, 2019, 242(1):98-114. http://www.ncbi.nlm.nih.gov/pubmed/29508916
    [5]
    PRIYANKA D, LAHIRI M A. Transcriptome analysis of grapevine under salinity and identification of key genes responsible for salt tolerance[J]. Functional & Integrative Genomics, 2018, 19(1):61-73. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=41bda7754b429f5c64fce8bd85636bcd
    [6]
    LI F, FAN G, LU C, et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution[J]. Nature Biotechnology, 2015, 33(5):524-530. doi: 10.1038/nbt.3208
    [7]
    LONG L, ZHAO J R, GUO D D, et al. Identification of NHXs in Gossypium species and the positive role of GhNHX1 in salt tolerance[J]. BMC Plant Biology, 2020, 20(1):147. http://www.researchgate.net/publication/340512726_Identification_of_NHXs_in_Gossypium_species_and_the_positive_role_of_GhNHX1_in_salt_tolerance
    [8]
    GUO W F, LI G Q, WANG N, et al. A Na+/H+ antiporter, K2-NhaD, improves salt and drought tolerance in cotton (Gossypium hirsutum L.)[J]. Plant Molecular Biology, 2020, 102(4/5):553-567. doi: 10.1007/s11103-020-00969-1
    [9]
    ANDERS S, PYL P T, HUBER W. HTSeq-a Python framework to work with high-throughput sequencing data[J]. Bioinformatics, 2015, 31(2):166-169. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=19607a6df9ef19533db3a49b1cd971fd
    [10]
    PATEL R K, MUKESH J, ZHANJIANG L. NGS QC Toolkit:a toolkit for quality control of next generation sequencing data[J]. PLoS One, 2012, 7(2):e30619. doi: 10.1371/journal.pone.0030619
    [11]
    PERTEA M, KIM D, PERTEA G M, et al. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown[J]. Nature Protocols, 2016, 11(9):1650-1667. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2d925d5484b421348acf3a37a3f95a7b
    [12]
    郑超, 李登高, 白薇.植物富含半胱氨酸的类受体激酶的研究进展[J].生物技术通报, 2016, 32(11):10-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swjstb201611002

    ZHENG C, LI D G, BAI W. Advances on cysteine-rich receptor-like kinases in plants[J]. Biotechnology Bulletin, 2016, 32(11):10-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=swjstb201611002
    [13]
    刘海娇, 杜立群, 林金星, 等.植物环核苷酸门控离子通道及其功能研究进展[J].植物学报, 2015, 50(6):779-789. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwxtb201506014

    LIU H J, DU L Q, LIN J X, et al. Recent advances in cyclic nucleotide-gated ion channels with their functions in plants[J]. Chinese Bulletin of Botany, 2015, 50(6):779-789. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zwxtb201506014
    [14]
    冯蕾, 张海文, 黄荣峰.植物LRR类受体蛋白激酶的研究进展[J].中国农业科技导报, 2012(6):49-54. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykjdb201206008

    F L, ZHANG H W, HUANG R F. Research progress on LRR receptor-like protein kinase in plant[J]. Journal of Agricultural Science and Technology, 2012, 14(6):43-48. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgnykjdb201206008
    [15]
    RASBERY J M, SHAN H, LECLAIE R J, et al. Arabidopsis thaliana squalene epoxidase 1 is essential for root and seed development[J]. Journal of Biological Chemistry, 2007, 282(23):17002-17013. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2ee643f99dfc9f52b72ab8f33e400ae6
    [16]
    YAN H Y, SHENG M H, WANG C C, et al. AtSPX1-mediated transcriptional regulation during leaf senescence in Arabidopsis thaliana[J]. Plant Science, 2019, 283:238-246. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7231472ff70271b062c4dd010ca495d4
    [17]
    KATSIARIMPA A, MUNOZ A, KALINOWSKA K, et al. The ESCRT-Ⅲ interacting deubiquitinating enzyme AMSH3 is essential for degradation of ubiquitinated membrane proteins in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2014, 55(4):727-736. doi: 10.1093/pcp/pcu019
    [18]
    刘帅, 朱明鲲, 刘旭, 等.拟南芥abf3和abf4突变体对ABA和盐胁迫响应[J].华南师范大学学报(自然科学版), 2012(4):106-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201204022

    LIU S, ZHU M K, LIU X, et al. Studies on the responses to ABA and salt stress in abf3 and abf4 -related mutants of Arabidopsis[J]. Journal of South China Normal University(Natural Science Edition), 2012(4):106-110. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201204022
    [19]
    HUNTER K, KIMURA S, ROKKA A, et al. CRK2 enhances salt tolerance by regulating callose deposition in connection with PLDα1[J]. Plant physiology, 2019, 180:2004-2021. http://www.researchgate.net/publication/333296156_CRK2_enhances_salt_tolerance_by_regulating_callose_deposition_in_connection_with_PLDa1
    [20]
    JUNGA E H, JUNGA H W, LEE S C, et al. Identification of a novel pathogen-induced gene encoding a leucine-rich repeat protein expressed in phloem cells of Capsicum annuum[J]. Biochimica et Biophysica Acta, 2004, 1676(3):211-222. doi: 10.1016/S0167-4781(03)00120-9
    [21]
    李桂花, 张建峰, 梅勇, 等.盐碱胁迫下油菜对磷元素的吸收[J].核农学报, 2007(5):78-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb200705016

    LI G H, ZHANG J F, MEI Y, et al. Effects of salt stress on phosphorus uptake by European rape sheiaralle[J]. Journal of Nuclear Agricultural Sciences, 2007, 21(5):78-81. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb200705016
    [22]
    MAGWANGA R O, LU P, KIRUNGU J N, et al. Knockdown of cytochrome P450 genes Gh_D07G1197 and Gh_A13G2057 on chromosomes D07 and A13 reveals their putative role in enhancing drought and salt stress tolerance in Gossypium hirsutum[J]. Genes (Basel), 2019, 10:226/1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=MDPI000000182684
    [23]
    EHLTING J, PROVART N J, WERCK-REICHHART D, et al. Functional annotation of the Arabidopsis P450 superfamily based on large-scale co-expression analysis[J]. Biochemical Society Transactions, 2006, 34(6):1192-1198. http://www.ncbi.nlm.nih.gov/pubmed/17073783
    [24]
    WANG C, YANG Y, WANG H, et al. Ectopic expression of a cyto-chrome P450 monooxygenase gene PtCYP714A3 from populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice[J]. Plant Biotechnol Journal, 2016, 14(9):1838-1851. doi: 10.1111/pbi.12544
  • Cited by

    Periodical cited type(2)

    1. 李宪,达举霞,章欢. 四阶两点边值问题n个对称正解的存在性. 华南师范大学学报(自然科学版). 2024(01): 123-127 .
    2. 达举霞. 四阶两点边值问题3个对称正解的存在性. 华南师范大学学报(自然科学版). 2021(01): 90-93 .

    Other cited types(0)

Catalog

    Article views (916) PDF downloads (92) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return