Loading [MathJax]/extensions/TeX/boldsymbol.js

居民地方感的尺度偏好与影响因素研究

徐梦洁, 王如月, 刘颖, 吴红梅

徐梦洁, 王如月, 刘颖, 吴红梅. 居民地方感的尺度偏好与影响因素研究[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 91-101. DOI: 10.6054/j.jscnun.2020031
引用本文: 徐梦洁, 王如月, 刘颖, 吴红梅. 居民地方感的尺度偏好与影响因素研究[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 91-101. DOI: 10.6054/j.jscnun.2020031
XU Mengjie, WANG Ruyue, LIU Ying, WU Hongmei. The Scale Preference of the Residents' Sense of Place and its Factors[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 91-101. DOI: 10.6054/j.jscnun.2020031
Citation: XU Mengjie, WANG Ruyue, LIU Ying, WU Hongmei. The Scale Preference of the Residents' Sense of Place and its Factors[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 91-101. DOI: 10.6054/j.jscnun.2020031

居民地方感的尺度偏好与影响因素研究

基金项目: 

教育部人文社会科学研究规划基金项目 16YJAZH067

详细信息
    通讯作者:

    吴红梅,副教授,Email:7564268@qq.com

  • 中图分类号: K901.3

The Scale Preference of the Residents' Sense of Place and its Factors

  • 摘要: 以南京农业大学学生为被试,通过半结构化的调查问卷,结合定量和质性分析方法,了解现有行政区划体系下居民对地方依附和地方认同的偏好尺度,分析其人口统计学差异,揭示地方感形成机制与居民地方感偏好尺度的关联.研究结果表明:(1)居民地方依附的尺度偏好呈“倒U型曲线”;地方认同的尺度偏好随尺度递减而下降. (2)年龄、独生子女与否、民族、户籍、专业、入学前的住校时间都会影响居民地方感尺度偏好. (3)地方依附和地方认同作为地方感的从属概念,均包含了情感、认知和行为的过程,都可以采用认同领域的指导性理论加以诠释.
    Abstract: The students from Nanjing Agricultural University were enrolled as the subjects and data were acquired through a semi-structured questionnaire. With a combination of the qualitative and quantitative methods, data were analyzed and employed to understand the scale preference of the residents' place attachment and place identity under the present administrative division system. Furthermore, the difference of demographic variables in scale distributions of the two dimensions of sense of place (SOP) was examined and the impact of the formation mechanism of SOP on scale preference was discussed. The obtained conclusions are listed as follows. First, the scale distribution of the residents' place attachment is an inverted U-shaped curve in which the medium scales including the city and the county are most attached to while the larger scale of the province and the smaller scales such as the village and the town are much less attached to. The scale distribution of the residents' place identity is different in that the larger the scale, the more it is preferred by the subjects. Second, demographic factors including age, only-childhood, nationality, household registration, university major and length of time living in a dormitory before entering university significantly influence the residents' scale preference of SOP, either on one dimension or both. Third, as the subordinate concepts of SOP, place attachment and place identity both contain the three psychological aspects of feeling, cognition and behavior. In addition, both dimensions can be interpreted with the guiding principles of identity theory, i.e., distinctiveness, continuity, self-efficacy and self-esteem.
  • 随着公司股份制改革, 为了保证公司现金流的充足和运营安全, 公司在发行股票筹集资金时需考虑回馈作为投资者的股东, 即分红.分红问题中, 讨论得较多的有经典风险模型和风险对偶模型[1-6], 其中风险对偶模型可描述为[1]:

    U(t)=uct+S(t)(tN+,uN), (1)

    其中, U(0)=u表示公司的初始资金, 正整数c表示在单位时间(t-1, t]内的支出, S(t)表示直到t时刻的总收益.

    风险对偶模型中研究得较多的分红策略有:Barrier策略[1]和Threshold策略[2], 例如:运用Laplace变换方法讨论了复合Poisson对偶模型的最优分红Barrier的确定方法[1]; 利用2个Integro积分方程和Laplace变换给出了最优分红Threshold的计算方法[2].显然, 在最优分红问题中, 既提高股东收益又降低公司风险的方案应当同时考虑分红与再注资[7-13], 例如:在离散经典风险模型中证明了最优值函数是一个Hamilton-Jacobi-Bellman(HJB)方程的唯一解, 指出再注资后最优分红策略是Barrier策略[7]; 在对偶模型中证明了带注资的最优分红策略为Barrier策略[8]; 讨论了带比例和固定交易费的再注资的最优分红问题, 并通过数值实例说明分红边界随交易费比例的增加而上升[9]; 在复合二项风险模型中证明了最优值函数是一个HJB方程的唯一解, 并验证了最优控制策略是双Barrier策略[10].为了更贴合实际, 考虑分红贴现利率的变化具有随机性[14-15], 例如:在随机利率下讨论了离散风险模型中具有延迟索赔的最优分红问题, 得到了最优策略的一个高效算法[14].

    本文在红利有界的条件下, 研究复合二项对偶模型中带比例交易费再注资且分红贴现利率随机变化的最优分红问题; 运用压缩映射不动点原理证明了该最优分红问题的最优值函数是一个离散HJB方程的唯一解, 得到了最优分红策略和最优值函数的计算方法; 为了能在实际运用中计算最优红利值, 根据分红策略的一些性质得到了该最优值函数的可无限逼近的上界和下界; 最后给出数值实例来验证本文所给的最优分红策略的有效性.

    文中用到的相关记号、符号如下:

    (ⅰ) N={0, 1, 2, …}; N+={1, 2, …}; Nk={0, 1, 2, …, k} (kN).

    (ⅱ) c, C, m, xN+; i, j=1, 2, …, m.

    (ⅲ) Ftσ代数, 包含了t时刻及之前的所有信息.

    (ⅳ) a1a2=max{a1, a2}, a1a2=min{a1, a2}.

    假设任意单位时间(t-1, t] (tN+)内至多有一次收入, 在t的前一瞬时结算.用εt=1表示有一次收入,收入量为XtN+; εt=0表示无收入.序列{Xt}和{εt}分别为独立同分布的随机变量, 其中{εt}具有概率Pr(εt=1)=p (0 < p < 1), Pr(εt=0)=q=1-p, {Xt}具有概率函数f(x)=Pr(Xt=x)和分布函数F(x)=xl=1f(l), 且与{εt}相互独立.则直到时刻t的总收益S(t)是复合二项序列[16]:

    S(t)={0(t=0),X1ε1+X2ε2++Xtεt(t1).

    再假设(t-1, t]时间段的利率{Rt, tN+}是有限状态空间{r1, r2, …, rm}的关于Ft可测的齐次Markov链, 一步转移概率阵为P=(pij)i, j=1m, 其中pij=Pr(Rt+1=rj|Rt=ri).令vi (0 < vi < 1)为第i时间段内的贴现因子, v=max{v1, v2, …, vm}, 则vi=1/(1+ri).

    在模型(1)中引入分红策略.假设在0时刻不考虑分红, 分别用dtzt表示t(tN)时刻的分红和再注资, 记d0=0.在任何时刻t的分红策略满足以下4个条件称为可行的策略:(1)dt取整数且有上界C; (2)dtzt关于Ft可测; (3)盈余u不大于c时不分红, 并由股东注入相应的资金c-u(存在交易费), 使盈余能够快速恢复到c; (4)盈余u不小于c时不注资, 分红由超出c的部分承担.

    由于模型(1)具有Markov性质, 所以只需讨论依赖于各时刻盈余的可行策略, 这类策略是关于盈余的函数, 组成的集合用Λ表示.为方便讨论, 用φi(u)表示盈余为u、利率状态为ri时的分红量, 则任意时刻t (tN+)的利率Rt=rj时的分红量为φj(U(t-1)-c+Xtεt).故初始利率为R0=ri的累积分红折现均值函数(以下简称值函数)[7]

    Vi(u;φi)=E[k=1dk(kt=111+Rt)k=0zk(kt=111+Rt)|R0=ri], (2)

    0t=111+Rt=1.

    优化目标是找到最优值函数

    Vi(u;φi)=supφiΛVi(u;φi)

    和对应的最优分红策略, 记为φi*(u)=argmax Vi(u, φi).为方便讨论, Vi(u; φi)记为Vi(u).

    对任意的φi(u)∈Λ, 根据全期望公式[17], 带比例交易费再注资的值函数Vi(u)满足:

    Vi(u)={(1+β)(uc)+Vi(c)(0u<c),qmj=1pijvj[Vj(ucφj(uc))+φj(uc)]+pmj=1pijvjx=1[Vj(uc+xφj(uc+x))φj(uc+x)]f(x)(uc), (3)

    其中β(β≥0)为交易费的比例(常量).

    定理1  对任意的φi(u)∈Λ, 最优值函数Vi*(u)满足如下HJB方程:

    Vi(u)={(1+β)(uc)+Vi(c)(0u<c),qmj=1pijvj[maxaN(C(u2c))0(Vj(uca)+a)]+pmj=1pijvjx=1[maxaN(C(u2c+x))0(Vj(uc+xa)+a)f(x)](uc). (4)

    证明  对式(3)取最优值得:

    Vi(u)={supφi(u)Λ{(1+β)(uc)+Vi(c)}(0u<c),supφi(u)Λ{qmj=1pijvj[Vj(ucφj(uc))+φj(uc)]+pmj=1pijvjx=1[Vj(uc+xφj(uc+x))+φj(uc+x)]f(x)}(uc). (5)

    显然式(5)与式(4)等价.证毕.

    定义1[16]  记H表示所有m维有界实序列组成的集合.对H中任意两点X=(Xi(u))和Y=(Yi(u))(uN, i=1, 2, …, m), 称

    d\left( {\mathit{\boldsymbol{X}},\mathit{\boldsymbol{Y}}} \right) = \left\| {\mathit{\boldsymbol{X}} - \mathit{\boldsymbol{Y}}} \right\| = \mathop {\sup }\limits_{u,i} \left| {{X_i}\left( u \right) - {Y_i}\left( u \right)} \right|

    XY的距离.显然H=(H, d)是完备度量空间, 且任意的V =(Vi(u))∈H.

    对任意的V =(Vi(u))∈H (i={1, 2, …, m}), 定义

    \begin{array}{*{20}{l}} {b_{{V_i}}}\left( u \right) = \left\{ \begin{array}{*{20}{l}} 0\;\;\;\;\left( {0 \leqslant u \leqslant c} \right), \hfill \\ \arg \mathop {\max }\limits_{d \in {\mathbb{N}_{C \wedge \left( {u - c} \right)}}} \left\{ {{V_i}\left( {u - d} \right) + d} \right\}\;\;\;\;\;\left( {u > c} \right). \hfill \\ \end{array} \right. \end{array}

    又因式(4)中当0≤u < c时, Vi*(u)的解的情况仅依赖于Vi*(c)的解, 下面讨论ucVi*(u)的解的情况.

    T =(T1, T2, …, Tm), 其中Ti (i=1, 2, …, m)为H上的m个算子, 满足:

    \begin{array}{l} {T_i}\mathit{\boldsymbol{V}} = q\sum\limits_{j = 1}^m {{p_{ij}}} {v_j}\left[ {{V_j}\left( {u - c - {b_{{V_j}}}\left( {u - c} \right)} \right) + {b_{{V_j}}}\left( {u - c} \right)} \right] + \\ \;\;\;\;\;\;\;\;p\sum\limits_{j = 1}^m {{p_{ij}}} {v_j}\sum\limits_{x = 1}^\infty {\left[ {{V_j}\left( {u - c + x - {b_{{V_j}}}\left( {u - c + x} \right)} \right) + } \right.} \\ \;\;\;\;\;\;\;\;\left. {{b_{{V_j}}}\left( {u - c + x} \right)} \right]f\left( x \right)\;\;\;\;\left( {u \ge c} \right), \end{array} (6)

    \mathit{\boldsymbol{TV}} = \left( {{T_1}\mathit{\boldsymbol{V}},{T_2}\mathit{\boldsymbol{V}}, \cdots ,{T_m}\mathit{\boldsymbol{V}}} \right), (7)

    则式(4)中uc的部分等价于

    {T_i}\mathit{\boldsymbol{V}} = {V_i}, (8)

    \mathit{\boldsymbol{TV}} = \mathit{\boldsymbol{V}}. (9)

    定理2  方程(9)有且仅有唯一解.

    证明  假设对任意Xi(u), Yi(u)∈H, i={1, 2, …, m}, 及给定的uc, Xi(u-bXi(u))+bXi(u)≥Yi(u-bYi(u))+bYi(u), 因为Yi(u-bYi(u))+bYi(u)≥Yi(u-bXi(u))+bXi(u), 所以

    \begin{array}{*{20}{l}} \mathop {\sup }\limits_{u \geqslant c} \left| {{X_i}\left( {u - {b_{{X_i}}}\left( u \right)} \right) + {b_{{X_i}}}\left( u \right) - \left[ {{Y_i}\left( {u - {b_{{Y_i}}}\left( u \right)} \right) + {b_{{Y_i}}}\left( u \right)} \right]} \right| \leqslant \hfill \\ \;\;\;\mathop {\sup }\limits_{u \geqslant c} \left| {{X_i}\left( {u - {b_{{X_i}}}\left( u \right)} \right) + {b_{{X_i}}}\left( u \right) - \left[ {{Y_i}\left( {u - {b_{{X_i}}}\left( u \right)} \right) + {b_{{X_i}}}\left( u \right)} \right]} \right| \leqslant \hfill \\ \;\;\;\mathop {\sup }\limits_{u \geqslant c} \left| {{X_i}\left( u \right) - {Y_i}\left( u \right)} \right| \leqslant \left\| {\mathit{\boldsymbol{X}} - \mathit{\boldsymbol{Y}}} \right\|, \hfill \\ \end{array}

    \begin{gathered} \mathop {\sup }\limits_{u \geqslant c} \left| {{T_i}\mathit{\boldsymbol{X}} - {T_i}\mathit{\boldsymbol{Y}}} \right| \leqslant q\sum\limits_{j = 1}^m {{p_{ij}}} {v_j}\left\| {\mathit{\boldsymbol{X}} - \mathit{\boldsymbol{Y}}} \right\| + \hfill \\ \;\;\;\;p\sum\limits_{i = 1}^m {{p_{ij}}} {v_j}\sum\limits_{x = 1}^\infty {\left\| {\mathit{\boldsymbol{X}} - \mathit{\boldsymbol{Y}}} \right\|} f(x) \leqslant v\left\| {\mathit{\boldsymbol{X}} - \mathit{\boldsymbol{Y}}} \right\|. \hfill \\ \end{gathered}

    故对任意的uc, 有

    d\left( {\mathit{\boldsymbol{TX}},\mathit{\boldsymbol{TY}}} \right) \leqslant vd\left( {\mathit{\boldsymbol{X}},\mathit{\boldsymbol{Y}}} \right).

    在0 < v < 1的假设下, 算子T是压缩映射, 因此, 当uc时, 方程(9)有且仅有唯一解.证毕.

    结论1  对任意u \mathbb{N} , i={1, 2, …, m}, 方程(4)有且仅有唯一解, 且该唯一解为最优值函数Vi*(u).

    定理3  对任意的φi(u)∈Λ, u \mathbb{N} , i={1, 2, …, m}, Vi(u)取最优值时当且仅当

    \begin{array}{*{20}{l}} \varphi _i^*\left( u \right) = \left\{ {\begin{array}{*{20}{l}} 0\ \ \ \ \ {(0 \leqslant u \leqslant c),} \\ {\arg \mathop {\max }\limits_{_{d \in {\mathbb{N}_{C \wedge (u - c)}}}} \left( {{V_i}(u - d) + d} \right)}&{(u > c).} \end{array}} \right. \end{array} (10)

    证明  (1)必要性.由模型的假设知, 当0≤uc时, φi(u)=0.对任意的i={1, 2, …, m}, 若Vi(u)是最优的值函数, 则Vi(u)满足式(3)、(4).比较式(3)与式(4), 当u>c时, 有

    {V_i}\left( {u - {\varphi _i}\left( u \right)} \right) + {\varphi _i}\left( u \right) = \mathop {\max }\limits_{_{d \in {\mathbb{N}_{C \wedge (u - c)}}}} \left( {{V_i}(u - d) + d} \right),

    因此式(10)成立.

    (2) 充分性.因方程(4)的解存在且唯一, 故充分性成立.证毕.

    采用Bellman递归算法, 计算最优值函数列(Vi*(u))和最优分红策略φi*(u) (u \mathbb{N} )的值[16].即任意给定一个初始函数列(Vi(0)(u)), 根据下式计算(Vi(s)(u)) (s=1, 2, …):

    \begin{array}{*{20}{l}} V_i^{(s)}(u) = \hfill \\ \left\{ \begin{array}{*{20}{l}} \left( {1 + \beta } \right)\left( {u - c} \right) + V_i^{\left( {s - 1} \right)}(c)\;\;\;\;\left( {0 \leqslant u < c} \right), \hfill \\ q\sum\limits_{j = 1}^m {{p_{ij}}} {v_j}\left[ {V_j^{(s - 1)}\left( {u - c - {b_{V_j^{\left( {s - 1} \right)}}}\left( {u - c} \right)} \right) + {b_{V_j^{\left( {s - 1} \right)}}}\left( {u - c} \right)} \right] + \hfill \\ p\sum\limits_{j = 1}^m {{p_{ij}}} {v_j}\sum\limits_{x = 1}^\infty {\left[ {V_j^{(s - 1)}\left( {u - c + x - {b_{V_j^{(s - 1)}}}(u - c + x)} \right) + } \right.} \hfill \\ \left. {{b_{V_j^{(s - 1)}}}(u - c + x)} \right]f(x)\;\;\;\;(u \geqslant c). \hfill \\ \end{array} \right. \hfill \\ \end{array} (11)

    由不动点原理及式(8)、(11)得

    V_i^ * \left( u \right) = \mathop {\lim }\limits_{n \to \infty } V_i^{(n)}(u) = \mathop {\lim }\limits_{n \to \infty } T_i^nV_i^{(0)}(u),

    n充分大时可以用Vi(n)(u)近似Vi*(u), 它们之间的误差估计为

    d\left( {V_i^{(n)},V_i^*} \right) \leqslant \frac{{{v^n}}}{{1 - v}}. (12)

    当时间区间(t-1, t]内可能的收入不是有界的随机变量时, 递归式(11)中的函数序列存在无穷项之和, 不便于数值计算.在C < ∞的情形下, 对任意的n1 \mathbb{N} +, 考虑如下2个方程:

    \begin{array}{*{20}{l}} V_i^{*\left( 1 \right)}\left( u \right) = \hfill \\ \;\;\;\left\{ \begin{array}{*{20}{l}} (1 + \beta )(u - c) + V_i^{*(1)}(c)\quad (0 \leqslant u < c), \hfill \\ q\sum\limits_{j = 1}^m {{p_{ij}}} {v_j}\left[ {V_j^{*(1)}\left( {u - c - {b_{V_j^*}}(u - c)} \right) + {b_{V_j^*(1)}}(u - c)} \right] + \hfill \\ \;\;\;p\sum\limits_{j = 1}^m {{p_{ij}}} {v_j}\sum\limits_{x = 1}^{{n_1}} {\left[ {V_j^{*(1)}\left( {u - c + x - {b_{V_j^*(1)}}(u - c + x)} \right) + } \right.} \hfill \\ \left. {{b_{V_j^*(1)}}(u - c + x)} \right]f(x)\;\;\;\;\;(u \geqslant c); \hfill \\ \end{array} \right. \hfill \\ \end{array} (13)
    \begin{array}{*{20}{l}} V_i^{ * \left( 2 \right)}\left( u \right) = \hfill \\ \;\;\;\left\{ \begin{array}{*{20}{l}} (1 + \beta )(u - c) + V_i^{*(2)}(c)\;\;\;\;(0 \leqslant u < c), \hfill \\ q\sum\limits_{j = 1}^m {{p_{ij}}} {v_j}\left[ {V_j^{*(2)}\left( {u - c - {b_{V_j^{*(2)}}}(u - c)} \right) + {b_{V_j^{*(2)}}}(u - c)} \right] + \hfill \\ \;\;\;\;p\sum\limits_{j = 1}^m {{p_{ij}}} {v_j}\sum\limits_{x = 1}^{{n_1}} {\left[ {V_j^{*(2)}\left( {u - c + x - {b_{V_j^*(2)}}(u - c + x)} \right) + } \right.} \hfill \\ \left. {\;\;\;\;\;{b_{{V_j}*(2)}}(u - c + x)} \right]f(x) + \frac{{pvC}}{{1 - v}}\bar F\left( {{n_1}} \right)\quad (u \geqslant c). \hfill \\ \end{array} \right. \hfill \\ \end{array} (14)

    定理4  对任意的u \mathbb{N} , i={1, 2, …, m}, 有

    V_i^{*(1)}(u) \leqslant V_i^*(u) \leqslant V_i^{*(2)}(u). (15)

    证明  (1)先证Vi*(1)(u)≤Vi*(u) (uc).

    对任意的uc和给定的i, 记Wi(1)(u)为方程(6)等号的右边, 则Vi*(1)(u)≤Wi(1)(u)≤TiWi(1)(u).记Wi(2)(u)=TiWi(1)(u), 则Wi(1)(u)≤Wi(2)(u)≤TiWi(2)(u).依次类推, 可得一个递增的函数序列{Wi(n2)(u), n2=1, 2, …}满足Wi(n2+1)=TiWi(n2), 有

    \mathop {\lim }\limits_{{n_2} \to \infty } W_i^{\left( {{n_2}} \right)}(u) = V_i^*(u).

    因此,

    V_i^{*(1)}(u) \leqslant V_i^*(u)\quad (u \geqslant c)

    (2) 同理可证Vi*(u)≤Vi(2)(u) (uc)[18].

    (3) 由证明过程(1)、(2), 当uc时, 有Vi*(1)(u)≤Vi*(u)≤Vi*(2)(u); 由式(4)、(13)、(14), 当0≤u < c时, 有Vi*(1)(u)≤Vi*(u)≤Vi*(2)(u).证毕.

    推论1  对任意的0 < v < 1, n1, u \mathbb{N} , i={1, 2, …, m}, 有

    d\left( {V_i^{*(1)},V_i^{*(2)}} \right) \leqslant \frac{{pvC\bar F\left( {{n_1}} \right)}}{{(1 - v)\left( {1 - qv - pvF\left( {{n_1}} \right)} \right)}}. (16)

    证明  由式(13)、(14), 当0≤u < c时, 有

    d\left( {V_i^{*(1)}(u),V_i^{*(2)}(u)} \right) \leqslant d\left( {V_i^{*(1)}(c),V_i^{*(2)}(c)} \right).

    uc时, 由定理2的证明过程,有

    \begin{gathered} d\left( {V_i^{*(1)},V_i^{*(2)}} \right) \leqslant q\sum\limits_{i = 1}^m {{p_{ij}}} {v_j}d\left( {V_i^{*(1)},V_i^{*(2)}} \right) + \hfill \\ \;\;\;\;\;p\sum\limits_{i = 1}^m {{p_{ij}}} {v_j}\sum\limits_{x = 1}^{{n_1}} d \left( {V_i^{*(1)},V_i^{*(2)}} \right)f(x) + \frac{{pvC}}{{1 - v}}\bar F\left( {{n_1}} \right) \leqslant \hfill \\ \;\;\;\;\;\left( {qv + pvF\left( {{n_1}} \right)} \right)d\left( {V_i^{*(1)},V_i^{*(2)}} \right) + \frac{{pvC}}{{1 - v}}\bar F\left( {{n_1}} \right), \hfill \\ \end{gathered}

    则式(16)成立.证毕.

    n1充分大时, Vi*(1)(u)和Vi*(2)(u)能无限逼近最优值函数Vi*(u).定义算子\widetilde{\boldsymbol{T}}=\left(\tilde{T}_{1}, \tilde{T}_{2}, \cdots\right., \left.\tilde{T}_{m}\right), 其中\widetilde{\boldsymbol{T}} V_{i}^{*(1)}(u)等于式(13)等号的右边.显然, \tilde{\boldsymbol{T}}也是H上的压缩映射.运用式(13)或式(14)变换迭代公式(11)后,可进行数值实例的计算.

    综上可得最优红利值的算法:

    第1步, 精度控制.给定一个精度要求, 根据式(12)得到迭代步数n及式(16)中n1的值.

    第2步, 迭代计算.任意给定一个初始函数列(Vi(0)(u)) (0≤un1(n+1)), 由式(13)或式(14)变换迭代公式(11),然后计算(Vi(s)(u)) (0≤un1(n-s+1)), 其中s={1, 2, …, n}, 最终得到φi*(u)和Vi*(u)的近似值.

    本节列举了一个几何分布的实例, 利用第3节提出的最优红利值的算法来计算函数φi*(u)和Vi*(u), 其中转移概率矩阵采用与文献[14]、[19]类似的方法构造.为进一步对比分析, 计算不注资时的最优分红策略和最优值函数, 满足条件:(1)分红有上界, 且任何时刻的分红都不超过该时刻的盈余; (2)当盈余为负值时公司破产.不注资时的最优值函数Wi*(u)为[16]:

    \begin{array}{*{20}{l}} W_i^*(u) = q\sum\limits_{j = 1}^m {{p_{ij}}} {v_j}\left( {W_j^*\left( {u - c - {b_{W_j^*}}(u - c)} \right) + {b_{W_j^*}}(u - c)} \right) + \hfill \\ \;\;\;\;\;\;\;\;p\sum\limits_{j = 1}^\infty {{p_{ij}}} {v_j}\sum\limits_{x = 1}^\infty {\left( {W_j^*\left( {u - c + x - {b_{W_j^*}}(u - c + x)} \right) + } \right.} \hfill \\ \;\;\;\;\;\;\;\;\left. {{b_{W_j^*}}(u - c + x)} \right)f(x)\;\;\;\;\;(u \geqslant 0). \hfill \\ \end{array} (17)

    例1  假设p=0.7, c=C=5, 收入量服从均值为μ=10的几何分布, 概率函数为:

    f(x) = \frac{1}{{10}}{\left( {\frac{9}{{10}}} \right)^{x - 1}}\;\;\;\;\;(x = 1,2, \cdots ).

    再假设利率为:r1=0.05, r2=0.04, r3=0.03, 转移概率矩阵为:

    \mathit{\boldsymbol{P}} = \left( {\begin{array}{*{20}{c}} {0.5}&{0.2}&{0.3} \\ {0.25}&{0.6}&{0.15} \\ {0.1}&{0.2}&{0.7} \end{array}} \right).

    表 1是当交易费比例为β=0, 0.2, 0.4, 0.6, 1.2及不注资时, 最优分红策略φi*(u)对应的值.表 2是当交易费比例为β=0, 0.2, 1.2以及不注资时, 最优值函数Vi*(u)的部分近似值(精度为10-4).

    表  1  最优分红策略φi*(u) (i=1, 2, 3, C=5)
    Table  1.  The optimal dividend strategy φi*(u) (i=1, 2, 3, C=5)
    u β=0 β=0.2 β=0.4 β=0.6 β=1.2 不注资
    i=1 i=2 i=3 i=1 i=2 i=3 i=1 i=2 i=3 i=1 i=2 i=3 i=1 i=2 i=3 i=1 i=2 i=3
    0, 1, …, 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
    11 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
    12 2 2 2 2 2 2 1 0 0 0 0 0 0 0 0 0 0 0
    13 3 3 3 3 3 3 2 1 1 0 0 0 0 0 0 0 0 0
    14 4 4 4 4 4 4 3 2 2 0 0 0 0 0 0 0 0 0
    15 5 5 5 5 5 5 4 3 3 0 0 0 0 0 0 0 0 0
    16 5 5 5 5 5 5 5 4 4 1 1 1 0 0 0 0 0 0
    17 5 5 5 5 5 5 5 5 5 2 2 2 0 0 0 0 0 0
    18 5 5 5 5 5 5 5 5 5 3 3 3 0 0 0 0 0 0
    19 5 5 5 5 5 5 5 5 5 4 4 4 0 0 0 0 0 0
    20 5 5 5 5 5 5 5 5 5 5 5 5 0 0 0 0 0 0
    21 5 5 5 5 5 5 5 5 5 5 5 5 1 1 1 1 1 1
    22 5 5 5 5 5 5 5 5 5 5 5 5 2 2 2 2 2 2
    23 5 5 5 5 5 5 5 5 5 5 5 5 3 3 3 3 3 3
    24 5 5 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4
    25, 26, … 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
    下载: 导出CSV 
    | 显示表格
    表  2  最优值函数
    Table  2.  The optimal value function
    u β=0 β=0.2 β=1.2 不注资
    V1*(u) V2*(u) V3*(u) V1*(u) V2*(u) V3*(u) V1*(u) V2*(u) V3*(u) W1*(u) W2*(u) W3*(u)
    0 34.650 1 35.061 4 35.033 0 29.566 9 29.938 8 29.912 0 8.898 5 9.126 3 9.102 4 10.566 7 10.673 5 10.667 2
    1 35.650 1 36.061 4 36.033 0 30.766 9 31.138 8 31.112 0 11.098 5 11.326 3 11.302 4 11.740 8 11.859 4 11.852 5
    2 36.650 1 37.061 4 37.033 0 31.966 9 32.338 8 32.312 0 13.298 5 13.526 3 13.502 4 13.045 4 13.177 2 13.169 4
    3 37.650 1 38.061 4 38.033 0 33.166 9 33.538 8 33.512 0 15.498 5 15.726 3 15.702 4 14.494 9 14.641 3 14.632 7
    4 38.650 1 39.061 4 39.033 0 34.366 9 34.738 8 34.712 0 17.698 5 17.926 3 17.902 4 16.105 4 16.268 1 16.258 5
    5 39.650 1 40.061 4 40.033 0 35.566 9 35.938 8 35.912 0 19.898 5 20.126 3 20.102 4 20.153 1 20.357 0 20.344 9
    6 40.563 5 40.981 1 40.953 3 36.611 9 36.990 9 36.964 8 21.621 3 21.861 2 21.838 3 21.514 1 21.731 7 21.718 8
    7 41.471 9 41.896 0 41.868 7 37.645 3 38.031 5 38.006 1 23.301 5 23.553 2 23.531 4 22.928 8 23.160 6 23.146 9
    8 42.374 9 42.805 5 42.778 7 38.665 7 39.059 2 39.034 4 24.934 2 25.197 8 25.176 8 24.392 3 24.638 7 24.624 2
    9 43.271 8 43.708 9 43.682 6 39.671 9 40.072 7 40.048 5 26.514 1 26.789 7 26.769 4 25.897 9 26.159 4 26.144 0
    10 44.161 9 44.605 7 44.579 8 40.662 1 41.070 4 41.046 6 28.035 4 28.322 8 28.303 1 27.919 5 28.201 3 28.184 9
    11 45.026 6 45.477 8 45.452 1 41.602 2 42.018 6 41.995 0 29.391 2 29.691 0 29.671 3 29.159 1 29.453 2 29.436 1
    12 45.888 8 46.347 3 46.321 8 42.532 9 42.957 1 42.933 7 30.704 5 31.016 4 30.996 6 30.402 4 30.708 8 30.691 0
    13 46.748 7 47.214 4 47.189 1 43.453 8 43.885 9 43.862 6 31.974 3 32.298 0 32.278 1 31.643 1 31.961 7 31.943 4
    14 47.606 4 48.079 3 48.054 2 44.365 1 44.804 8 44.781 8 33.199 6 33.534 7 33.514 7 32.874 3 33.204 9 33.186 1
    15 48.462 3 48.942 3 48.917 3 45.266 9 45.714 1 45.691 2 34.380 0 34.726 1 34.705 8 34.191 7 34.535 2 34.515 8
    16 49.341 0 49.827 5 49.802 9 46.164 5 46.618 4 46.596 0 35.493 8 35.850 4 35.829 9 35.272 3 35.626 3 35.606 4
    17 50.210 9 50.704 0 50.679 8 47.055 5 47.516 2 47.494 1 36.577 4 36.944 3 36.923 6 36.341 4 36.705 5 36.685 3
    18 51.071 1 51.570 8 51.546 9 47.939 0 48.406 6 48.384 8 37.631 9 38.008 7 37.987 7 37.395 8 37.770 0 37.749 4
    19 51.920 3 52.426 9 52.403 2 48.814 2 49.289 0 49.267 4 38.658 4 39.044 8 39.023 6 38.432 8 38.816 7 38.795 8
    20 52.757 5 53.271 1 53.247 6 49.680 3 50.162 3 50.140 8 39.658 4 40.054 0 40.032 6 39.471 9 39.865 5 39.844 3
    21 53.553 2 54.074 4 54.050 7 50.524 1 51.014 3 50.992 6 40.629 3 41.033 7 41.012 2 40.435 0 40.837 4 40.816 1
    22 54.344 3 54.873 2 54.849 3 51.359 2 51.857 5 51.835 6 41.582 6 41.995 6 41.974 0 41.387 3 41.798 3 41.776 8
    23 55.130 8 55.667 3 55.643 1 52.185 7 52.692 0 52.669 8 42.519 7 42.941 1 42.919 4 42.328 0 42.747 4 42.725 8
    24 55.912 3 56.456 4 56.432 0 53.003 5 53.517 7 53.495 4 43.442 4 43.871 9 43.850 2 43.256 8 43.684 4 43.662 8
    25 56.688 7 57.240 3 57.215 7 53.812 9 54.335 0 54.312 3 44.352 3 44.789 6 44.767 9 44.178 5 44.614 0 44.592 5
    26 57.464 8 58.023 8 57.999 1 54.614 9 55.144 7 55.121 9 45.255 6 45.699 7 45.678 4 45.082 5 45.524 8 45.503 6
    27 58.231 4 58.797 9 58.772 9 55.408 8 55.946 3 55.923 3 46.152 9 46.603 9 46.582 9 45.980 5 46.429 6 46.408 8
    28 58.988 2 59.562 1 59.536 9 56.194 2 56.739 4 56.716 1 47.043 5 47.501 4 47.480 7 46.871 8 47.328 0 47.307 4
    29 59.735 0 60.316 3 60.290 7 56.970 8 57.523 7 57.500 0 47.926 5 48.391 7 48.371 1 47.755 7 48.219 2 48.198 7
    30 60.471 5 61.060 1 61.034 2 57.738 3 58.298 8 58.274 8 48.801 3 49.273 9 49.253 4 48.631 4 49.102 3 49.081 9
    下载: 导出CSV 
    | 显示表格

    表 1可知:β=0, 0.1, 0.4, 0.6, 1.2时, φi*(u)的门槛值分别为10、10、12、16、20, 表明本例给出的最优分红策略φi*(u)是Threshold策略[2].由表 2知:在资金u相同的条件下, 该最优分红策略φi*(u)所对应的最优值函数Vi*(u)与交易费比例β有关, Vi*(u)的值随着β的增大而减少; 再对比表 2中未注资的最优值函数Wi*(u), 发现交易费比例β控制在一定范围内时Vi*(u)明显大于Wi*(u).这说明了本文的最优红利值算法的可行性, 也验证了本文的最优分红策略的有效性.

    本文在复合二项对偶模型中讨论了带比例交易费再注资且分红贴现利率随机变化的最优分红问题, 运用压缩映射不动点原理证明了该最优分红问题的最优值函数是一个离散的HJB方程的唯一解, 得到了最优分红策略和最优值函数的优化算法.数值实例结果表明:当交易费比例控制在一定范围内时,相应的最优红利值大于未注资的最优红利值, 说明了文中最优分红策略的有效性.在今后的工作中, 可进一步研究最优分红策略的Threshold性质, 也可尝试在红利无限制的条件下讨论最优分红问题.

  • 图  1   改进后的地方感P-P-P框架

    Figure  1.   The improved P-P-P framework for sense of place

    表  1   被试地方感偏好尺度的频数分布

    Table  1   The frequency distribution of scale preference of the subjects' sense of place 

    维度/分组 省/直辖市/自治区 地级市/省辖市/自治州 县/自治县/区 乡/民族乡/镇/街道 村/社区
    地方依附 54(20.7%) 89(34.1%) 81(31.0%) 17(6.5%) 20(7.7%)
      男生 18(24.0%) 26(34.7%) 18(24.0%) 5(6.7%) 8(10.7%)
      女生 36(19.4%) 63(33.9%) 63(33.9%) 12(6.5%) 12(6.5%)
      19~20岁 7(14.3%) 15(30.6%) 19(38.8%) 4(8.2%) 4(8.2%)
      21岁 18(17.1%) 44(41.9%) 37(35.2%) 4(3.8%) 2(1.9%)
      22岁及以上 29(27.1%) 30(28.0%) 25(23.4%) 9(8.4%) 14(13.1%)
      独生子女 31(18.7%) 70(42.2%) 48(28.9%) 9(5.4%) 8(4.8%)
      非独子女 23(24.2%) 19(20.0%) 33(34.7%) 8(8.4%) 12(12.6%)
      汉族 44(18.9%) 87(37.3%) 74(31.8%) 15(6.4%) 13(5.6%)
      少数民族 10(35.7%) 2(7.1%) 7(25.0%) 2(7.1%) 7(25.0%)
      城规专业 21(21.4%) 23(23.5%) 39(39.8%) 7(7.1%) 8(8.2%)
      人力专业 8(14.3%) 28(50.0%) 14(25.0%) 3(5.4%) 3(5.4%)
      土管专业 16(21.1%) 28(36.8%) 21(27.6%) 4(5.3%) 7(9.2%)
      其他专业 9(29.0%) 10(32.3%) 7(22.6%) 3(9.7%) 2(6.5%)
      一年级 1(3.6%) 6(21.4%) 16(57.1%) 1(3.6%) 4(14.3%)
      二年级 9(29.0%) 9(29.0%) 8(25.8%) 4(12.9%) 1(3.2%)
      三年级 42(21.4%) 73(37.2%) 55(28.1%) 11(5.6%) 15(7.7%)
      四年级 2(33.3%) 1(16.7%) 2(33.3%) 1(16.7%) 0(0.0%)
      非农户籍 35(21.6%) 69(42.6%) 46(28.4%) 10(6.2%) 2(1.2%)
      农业户籍 19(19.2%) 20(20.2%) 35(35.4%) 7(7.1%) 18(18.2%)
      未住校 16(17.8%) 32(35.6%) 36(40.0%) 3(3.3%) 3(3.3%)
      住校1~3年 22(23.2%) 38(40.0%) 20(21.1%) 9(9.5%) 6(6.3%)
      住校4年及以上 16(21.1%) 19(25.0%) 25(32.9%) 5(6.6%) 11(14.5%)
    地方认同 146(55.9%) 92(35.2%) 23(8.8%) 0(0.0%) 0(0.0%)
      男生 43(57.3%) 28(37.3%) 4(5.3%) 0(0.0%) 0(0.0%)
      女生 103(55.4%) 64(34.4%) 19(10.2%) 0(0.0%) 0(0.0%)
      19~20岁 26(53.1%) 21(42.9%) 2(4.1%) 0(0.0%) 0(0.0%)
      21岁 55(52.4%) 39(37.1%) 11(10.5%) 0(0.0%) 0(0.0%)
      22岁及以上 65(60.7%) 32(29.9%) 10(9.3%) 0(0.0%) 0(0.0%)
      独生子女 80(48.2%) 73(44.0%) 13(7.8%) 0(0.0%) 0(0.0%)
      非独子女 66(69.5%) 19(20.0%) 10(10.5%) 0(0.0%) 0(0.0%)
      汉族 124(53.2%) 88(37.8%) 21(9.0%) 0(0.0%) 0(0.0%)
      少数民族 22(78.6%) 4(14.3%) 2(7.1%) 0(0.0%) 0(0.0%)
      城规专业 53(54.1%) 34(34.7%) 11(11.2%) 0(0.0%) 0(0.0%)
      人力专业 33(58.9%) 19(33.9%) 4(7.1%) 0(0.0%) 0(0.0%)
      土管专业 40(52.6%) 29(38.2%) 7(9.2%) 0(0.0%) 0(0.0%)
      其他专业 20(64.5%) 10(32.3%) 1(3.2%) 0(0.0%) 0(0.0%)
      一年级 13(46.4%) 14(50.0%) 1(3.6%) 0(0.0%) 0(0.0%)
      二年级 20(64.5%) 8(25.8%) 3(9.7%) 0(0.0%) 0(0.0%)
      三年级 109(55.6%) 68(34.7%) 19(9.7%) 0(0.0%) 0(0.0%)
      四年级 4(66.7%) 2(33.3%) 0(0.0%) 0(0.0%) 0(0.0%)
      非农户籍 88(54.3%) 62(38.3%) 12(7.4%) 0(0.0%) 0(0.0%)
      农业户籍 58(58.6%) 30(30.3%) 11(11.1%) 0(0.0%) 0(0.0%)
      未住校 51(56.7%) 28(31.1%) 11(12.2%) 0(0.0%) 0(0.0%)
      住校1~3年 47(49.5%) 41(43.2%) 7(7.4%) 0(0.0%) 0(0.0%)
      住校4年及以上 48(63.2%) 23(30.3%) 5(6.6%) 0(0.0%) 0(0.0%)
    注:括号内数值为频数相应的比重.
    下载: 导出CSV

    表  2   地方感尺度偏好的人口统计学特征卡方检验参数

    Table  2   The parameters of the chi-square test of demographic characteristics

    特征 地方感 x2 Sig
    性别 地方依附 3.667 0.454
    地方认同 1.612 0.447
    年龄 地方依附 17.160 0.002**
    地方认同 4.057 0.401
    独生/非独 地方依附 15.910 0.003**
    地方认同 15.243 0.000**
    民族 地方依附 21.101 0.000**
    地方认同 7.012 0.023*
    户籍 地方依附 33.273 0.000**
    地方认同 2.263 0.323
    专业 地方依附 14.290 0.027*
    地方认同 2.621 0.863
    年级 地方依附 3.988 0.136
    地方认同 0.447 0.800
    上大学前的住校时间 地方依附 12.737 0.013*
    地方认同 5.928 0.205
    注:*5%显著水平;**1%极显著水平.
    下载: 导出CSV

    表  3   地方依附编码一致性检验结果

    Table  3   The results of inter-rater reliability for coding of place attachment

    代码 Kappa指数
    主体 0.87
      个人 0.89
      群体 0.41
    过程 0.87
      情感 -
      认知 0.83
      行为 0.90
    客体 0.90
      地方的自然属性 -
      地方的社会属性 0.81
      地方的人文经济属性 0.89
      地方的空间属性 0.75
    其他 0.71
      特定语境 -
      未分类 -
    下载: 导出CSV

    表  4   地方认同编码一致性检验结果

    Table  4   The results of inter-rater reliability for coding of place identity

    代码 Kappa指数
    主体 0.89
      个人 0.89
      群体 0.48
    过程 0.87
      情感 -
      认知 0.55
      行为 0.61
    客体 0.96
      地方的自然属性 -
      地方的社会属性 0.43
      地方的人文经济属性 0.97
      地方的空间属性 0.96
    其他 0.56
      特定语境 -
      未分类 -
    下载: 导出CSV

    表  5   被试地方感编码结果的频数分布

    Table  5   The frequency distribution of coding results of subjects' sense of place

    一级代码 二级代码 三级代码 地方依附 地方认同
    频数/次 比重/% 频数/次 比重/%
    主体 个人 经历 104 39.8 15 5.7
    重大事件 25 9.6 3 1.1
    自我实现 30 11.5 3 1.1
    群体 地缘认同 28 10.7 19 7.3
    民族认同 3 1.1 1 0.4
    过程 情感 积极的情感 99 37.9 17 6.5
    认知 熟悉 37 14.2 2 0.8
    回忆与牵挂 16 6.1 1 0.4
    观点 9 3.4 7 2.7
    行为 习惯 17 6.5 58 22.2
    承担义务 2 0.8 2 0.8
    靠近家乡 4 1.5 1 0.4
    客体 社会属性 社会符号 34 13.0 13 5.0
    社交场合 19 7.3 1 0.4
    人文属性 地方优势 39 14.9 121 46.4
    地方的独特性 29 11.1 97 37.2
    自然环境 自然环境 9 3.4 0 0.0
    空间属性 尺度 45 17.2 42 16.1
    距离 21 8.0 51 19.5
    其他 其他 特定语境 5 1.9 25 9.6
    未分类 6 2.3 12 4.6
    总计 582 229.99 491 188.12
    下载: 导出CSV
  • [1]

    TUAN Y F. Topophilia:a study of environmental perception[M]. New Jersey:Prentice-Hall, 1974.

    [2]

    TUAN Y F. Space and place:the perspective of experience[M]. Minnesota:University of Minnesota Press, 1977.

    [3]

    SHAMAI S. Sense of place:an empirical measurement[J]. Geoforum, 1991, 22:347-358. doi: 10.1016/0016-7185(91)90017-K

    [4]

    LEWICKA M. Place attachment, place identity, and place memory:restoring the forgotten city past[J]. Journal of Environmental Psychology, 2008, 28(3):209-231. doi: 10.1016/j.jenvp.2008.02.001

    [5]

    KALTENBORN B P. Nature of place attachment:a study among recreation homeowners in Southern Norway[J]. Leisure Sciences, 1997, 19(3):175-189. doi: 10.1080/01490409709512248

    [6]

    LEWICKA M. Place attachment:how far have we come in the last 40 years?[J]. Journal of Environmental Psycho-logy, 2011, 31:207-230. doi: 10.1016/j.jenvp.2010.10.001

    [7]

    CASAKIN H, HERNÁNDEZ B, RUIZ C. Place attachment and place identity in Israeli cities:the influence of city size[J]. Cities, 2015, 42(10):224-230. http://www.sciencedirect.com/science/article/pii/S0264275114001371

    [8]

    PATTERSON M E, WILLIAMS D R. Maintaining research traditions on place:diversity of thought and scientific progress[J]. Journal of Environmental Psychology, 2005, 25(4):361-380. doi: 10.1016/j.jenvp.2005.10.001

    [9]

    DROSELTIS O, VIGNOLES V L. Towards an integrative model of place identification:dimensionality and predictors of intrapersonal-level place preferences[J]. Journal of Environmental Psychology, 2010, 30(1):23-34. doi: 10.1016/j.jenvp.2009.05.006

    [10]

    HIDALGO M C, HERNANDEZ B. Place attachment:conceptual and empirical questions[J]. Journal of Environmental Psychology, 2001, 21:273-281. doi: 10.1006/jevp.2001.0221

    [11]

    GUSTAFSON P. Mobility and territorial belonging[J]. Environment & Behavior, 2009, 41(4):490-508. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211481702/

    [12] 许振晓, 张捷.居民地方感对区域旅游发展支持度影响——以九寨沟旅游核心社区为例[J].地理学报, 2009, 64(6):736-744. doi: 10.3321/j.issn:0375-5444.2009.06.010

    XU Z X, ZHANG J. Research on influence of residents' place attachment on positive attitude to tourism with a mediator of development expectation:a case of core tourism community in Jiuzhaigou[J]. Acta Geographica Sinica, 2009, 64(6):736-744. doi: 10.3321/j.issn:0375-5444.2009.06.010

    [13] 周夏.城市形象传播中城市地方感的媒介呈现研究[D].南宁: 广西大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10593-1013372083.htm

    ZHOU X. Research on media presentation of urban sense of place in city image communication[D]. Nanning: University of Guangxi, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10593-1013372083.htm

    [14] 熊帼, 张敏, 姚磊, 等.大学生的地方依恋特征与形成机制——基于南京仙林大学城的调查[J].人文地理, 2013(5):31-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rwdl201305006

    XIONG G, ZHANG M, YAO L, et al. Study on characte-ristics and formation mechanism of college students' place attachment:based on the investigation of Xianlin Univer-sity Town[J]. Human Geography, 2013(5):31-35. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rwdl201305006

    [15] 林耿, 王炼军.全球化背景下酒吧的地方性与空间性——以广州为例[J].地理科学, 2011(7):794-801. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201107005

    LIN G, WANG L J. Placeness and speciality of bar under globalization:case of Guangzhou City, China[J]. Scientia Geographica Sinica, 2011(7):794-801. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx201107005

    [16]

    LEWICKA M. What makes neighborhood different from home and city?Effects of place scale on place attachment[J]. Journal of Environmental Psychology, 2010, 30(1):35-51. doi: 10.1016/j.jenvp.2009.05.004

    [17]

    SCANNELL L, GIFFORD R. The experienced psychological benefits of place attachment[J]. Journal of Environmental Psychology, 2017, 51:256-269. doi: 10.1016/j.jenvp.2017.04.001

    [18]

    LACZKO L S. National and local attachments in a changing world system:evidence from an international survey[J]. International Review of Sociology, 2005, 15(3):517-528. doi: 10.1080/03906700500272525

    [19]

    BROWN B B, PERKINS D D, BROWN G. Incivilities, place attachment and crime:block and individual effects[J]. Journal of Environmental Psychology, 2004, 24:359-371. doi: 10.1016/j.jenvp.2004.01.001

    [20]

    HUR M, NASAR J L, CHUN B. Neighborhood satisfaction, physical and perceived naturalness and openness[J]. Journal of Environmental Psychology, 2010, 20:52-59. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0215992855/

    [21]

    FÉLONNEAU M L. Love and loathing of the city:urbanophilia and urbanophobia, topological identity and perceived incivilities[J]. Journal of Environmental Psycho-logy, 2004, 24:43-52. doi: 10.1016/S0272-4944(03)00049-5

    [22] 盛婷婷, 杨钊.国外地方感研究进展与启示[J].人文地理, 2015(4):11-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rwdl201504003

    SHENG T T, YANG Z. Research progress and enlightenment on sense of place in foreign countries[J]. Human Geography, 2015(4):11-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rwdl201504003

    [23] 朱竑, 刘博.地方感、地方依恋与地方认同等概念的辨析及研究启示[J].华南师范大学学报(自然科学版), 2011(1):1-8. http://journal-n.scnu.edu.cn/article/id/494

    ZHU H, LIU B. Concepts analysis and research implications:sense of place, place attachment and place identity[J]. Journal of South China Normal University(Natural Science Edition), 2011(1):1-8. http://journal-n.scnu.edu.cn/article/id/494

    [24]

    HENNINK M, HUTTER I, BAILEY A. Qualitative rese-arch methods[M]. London:Sage, 2010.

    [25]

    SCANNELL L, GIFFORD R. Defining place attachment:a tripartite organizing framework[J]. Journal of Environmental Psychology, 2010, 30(1):1-10. doi: 10.1016/j.jenvp.2009.09.006

    [26]

    MANZO L C. For better or worse:exploring multiple dimensions of place meaning[J]. Journal of Environmental Psychology, 2005, 25(1):67-86. doi: 10.1016/j.jenvp.2005.01.002

    [27]

    LOW S M. Symbolic ties that bind[C]//ALTMAN I, LOW S M. Place attachment. New York: Plenum Press, 1992: 165-185.

    [28]

    CUBA L, HUMMON D M. Constructing a sense of home:place affiliation and migration across the life cycle[J]. Sociological Forum, 1993, 8(4):547-572. doi: 10.1007/BF01115211

    [29]

    HAY R. Sense of place in developmental context[J]. Journal of Environmental Psychology, 1998, 18(1):5-29. doi: 10.1006/jevp.1997.0060

    [30]

    RIEMER J W. Job relocation, sources of stress, and sense of home[J]. Community Work & Family, 2000, 3(2):205-217. http://www.researchgate.net/publication/233116014_Job_relocation_sources_of_stress_and_sense_of_home

    [31]

    FULLILOVE M T. Psychiatric implications of displacement:contributions from the psychology of place[J]. American Journal of Psychiatry, 1996, 153(12):1516-1523. doi: 10.1176/ajp.153.12.1516

    [32]

    STEPHANIE R, LAVRAKAS P J. Community ties:patterns of attachment and social interaction in urban neighborhoods[J]. American Journal of Community Psycho-logy, 1981, 9(1):55-66. doi: 10.1007/BF00896360

    [33]

    FRIED M. Grieving for a lost home[C]//DUHL L J. The urban condition: people and policy in the metropolis. New York: Simon & Schuster, 1963: 124-152.

    [34]

    ROWLES G D. Place and personal identity in old age:observations from Appalachia[J]. Journal of Environmental Psychology, 1983, 3(4):299-313. doi: 10.1016/S0272-4944(83)80033-4

    [35]

    STEDMAN R C. Is it really just a social construction?The contribution of the physical environment to sense of place[J]. Society & Natural Resources, 2003, 16(8):671-685. http://www.researchgate.net/publication/233245425_Is_It_Really_Just_a_Social_Construction_The_Contribution_of_the_Physical_Environment_to_Sense_of_Place

    [36]

    LALLI M. Urban-related identity:theory, measurement, and empirical findings[J]. Journal of Environmental Psychology, 1992, 12(4):285-303. doi: 10.1016/S0272-4944(05)80078-7

    [37]

    VASKE J J, KOBRIN K C. Place attachment and environmentally responsible behavior[J]. Journal of Environmental Education, 2001, 32(4):16-21. http://d.old.wanfangdata.com.cn/Periodical/lyxk201401012

    [38]

    JORGENSEN B S, STEDMAN R C. A comparative analysis of predictors of sense of place dimensions:attachment to, dependence on, and identification with lakeshore pro-perties[J]. Journal of Environmental Management, 2006, 79(3):316-327. doi: 10.1016/j.jenvman.2005.08.003

    [39]

    PROSHANSKY H M, FABIAN A K, KAMINOFF R. Place- identity:physical world socialization of the self[J]. Journal of Environmental Psychology, 1983, 3(1):57-83. doi: 10.1016/S0272-4944(83)80021-8

    [40] 许坤红.社区变迁与地域身份认同——以一个油田社区为例[D].武汉: 华中师范大学, 2009.

    XU K H. The development of community and regional identity: with an oilfield community as the research paradigm[D]. Wuhan: Central China Normal University, 2009.

    [41]

    BREAKWELL G M. Coping with threatened identities[M]. London:Methuen, 1986.

    [42] 狄乾斌, 计利群.地域认同视角下沿海城市海洋性特征分析与评价[J].地理科学, 2016, 36(11):1688-1696. http://d.old.wanfangdata.com.cn/Thesis/D01369297

    DI Q B, JI L Q. Analysis and evaluation of coastal cities marine characteristics from the perspective of regional identity[J]. Scientia Geographica Sinica, 2016, 36(11):1688-1696. http://d.old.wanfangdata.com.cn/Thesis/D01369297

    [43] 国务院.关于进一步推进户籍制度改革的意见[Z/OL]. (2014-07-30)[2019-09-20]. http://www.gov.cn/xinwen/2014-07/30/content_2726848.htm.
    [44]

    XU M, BAKKER M D, STRIJKER D, et al. Effects of distance from home to campus on undergraduate place attachment and university experience in China[J]. Journal of Environmental Psychology, 2015, 43:95-104. doi: 10.1016/j.jenvp.2015.05.013

  • 期刊类型引用(3)

    1. 赵金娥,王贵红,曾黎,李明. 常利率下保费随机收取风险模型分红问题的研究. 应用概率统计. 2023(05): 701-710 . 百度学术
    2. 陈喜林. 期性分红在有界红利率对偶模型中的应用研究. 佳木斯大学学报(自然科学版). 2021(04): 159-165 . 百度学术
    3. 权俊亮,胡华. 带干扰与注资的二维对偶模型限制分红问题. 华南师范大学学报(自然科学版). 2020(06): 97-102 . 百度学术

    其他类型引用(0)

图(1)  /  表(5)
计量
  • 文章访问数:  1821
  • HTML全文浏览量:  1170
  • PDF下载量:  59
  • 被引次数: 3
出版历程
  • 收稿日期:  2019-09-26
  • 网络出版日期:  2021-03-21
  • 刊出日期:  2020-04-24

目录

/

返回文章
返回