Pullback Attractors for the Boussinesq-Beam Equation with Time Delay
-
摘要: 利用压缩函数的方法和相关理论,研究带时滞项的Boussinesq-Beam方程的拉回吸引子的存在性:首先通过作内积和不等式估计得到拉回吸收集的存在性,然后借助构造具体的能量泛函并结合收缩函数法的思想验证带时滞项的Boussinesq-Beam方程的解所生成的过程{U(t,τ)}t⩾τ在CD(A),V中是渐近紧的,最后证明过程{U(t,τ)}t⩾τ在CD(A),V中存在拉回吸引子.Abstract: The existence of pullback attractors for the Boussinesq-Beam equation with time delay is handled with the concept of contractive function and some related method. Firstly, the existence of a pullback absorbing set is verified by taking the inner product and estimating the inequalities. Then the specific energy function is constructed and the method of contractive functions is used to prove that the process {U(t,τ)}t⩾τ in CD(A),V produced by the Boussinesq-Beam equation with time delay possess compactness. Finally, the existence of pullback attractors in CD(A),V for the process {U(t,τ)}t⩾τ is proved.
-
Keywords:
- time delay /
- pullback absorbing set /
- compactness /
- pullback attractor
-
带有时滞项的Boussinesq-Beam方程如下:
$$ \left\{ \begin{array}{l} \frac{{{\partial ^2}u}}{{\partial {t^2}}} - \alpha \Delta \frac{{{\partial ^2}u}}{{\partial {t^2}}} + \beta {\Delta ^2}\frac{{\partial u}}{{\partial t}} + {\Delta ^2}u + \frac{{\partial u}}{{\partial t}} = h\left( {t,{u_t}} \right) + f\left( {x,t} \right)\\ \;\;\;\;((x,t) \in \mathit{\Omega } \times [\tau , + \infty )),\\ {\left. u \right|_{\partial \mathit{\Omega }}} = {\left. {\Delta u} \right|_{\partial \mathit{\Omega }}} = 0\;\;\;\;(t \ge \tau - r),\\ u(x,t) = \phi (x,t - \tau ),\frac{{\partial u}}{{\partial t}}(x,t) = \frac{{\partial \phi }}{{\partial t}}(x,t - \tau )\\ \;\;\;\;\;(t \in [\tau - r,\tau ]), \end{array} \right. $$ (1) 其中, Ω是$\mathbb{R}^{N} $ (N≥3)中具有光滑边界$\partial \Omega $的有界区域, h是作用在某种带有遗传特征的解上的算子, $f(x, t) \in L_{\mathrm{loc}}^{2}\left(\mathbb{R} ; L^{2}(\Omega)\right) $为依赖于时间的外力项, ϕ是区间[τ-r, τ]上的初值, $\tau \in \mathbb{R}, \alpha \geqslant 0, r(>0) $是时滞影响的长度.对任意的t≥ τ, 用ut表示定义在区间[-r, 0]上满足$ u_{t}(\theta)=u(t+\theta) \quad(\theta \in(-r, 0))$的函数.
当α>0时, 方程(1)是改进的Boussinesq方程.文献[1]研究了带阻尼的广义Boussinesq方程$ {u_{tt}}\Delta u - \Delta {u_{tt}} + {\Delta ^2}u - k\Delta {u_t} = \Delta f(u)$解的整体与局部存在性以及解的爆破.文献[2]利用压缩映射原理证明了带有流体力学的阻尼项的Rosenau方程在n维时间权重的Sobolev空间中解的整体存在性与渐近性.文献[3]在一定假设条件下证明了带非线性项方程$ {u_{tt}}\Delta u - \Delta {u_{tt}} + {\Delta ^2}u - k\Delta {u_t} = \Delta f(u)$的弱解的整体存在性.当α=0时, 方程(1)是Beam方程, 又称为梁方程, 是出现在不同物理背景中的四阶偏微分方程.文献[4-7]得到了Beam方程的解的爆破、弱解的整体存在性、爆破速率以及一致吸引子等相关结论.
拉回吸引子是相空间的一族紧集, 在过程的作用下具有不变性, 且相对一致吸引子而言, 可以在较弱的外力假设下得到拉回吸引子的存在性.自治偏微分方程的拉回吸引子可由半群的紧性得到[8-12], 但由于受到与时间有关的外力作用, 自治系统所产生的半群性质被破坏, 在自治系统中起主要作用的关键理论不再适用于非自治系统, 比如算子的紧性, 因而, 需要使用双参数半群或者过程来证明拉回吸引子的存在性[13-17].文献[13]为了得到紧性, 对方程$ \frac{\partial u}{\partial t}-v \Delta u+(u \cdot \nabla) u+\nabla p=f(t)$进行分解, 即将过程分解成两部分, 使得一部分满足紧致性, 另一部分满足压缩性质.而文献[14]和文献[17]为了得到非自治系统具有拉回吸引子, 都通过构造压缩泛函得到非自治系统的渐近紧性, 从而克服了分解方程的困难.
目前,对带有时滞项的Boussinesq-Beam方程的研究比较少, 本文在文献[14]、[17]的基础上, 研究带有时滞项的Boussinesq-Beam方程的拉回吸引子的存在性.
1. 预备知识
为方便起见,引入以下记号.
用CX表示Banach空间C([-r, 0];X), 并赋予上确界模, 对任意的$ u \in C_{X}$, 其范数记为$ \|u\|_{C_{X}}=$ $ \mathop {\max }\limits_{t \in [ - r, 0]} \parallel u(t){\parallel _X}$.
记$\left(X, \|\cdot\|_{X}\right), \left(Y, \|\cdot\|_{Y}\right) $是满足连续嵌入$ X \subset Y$的Banach空间.用$ {C_{X, Y}}$表示Banach空间$ {C_X} \cap {C^1}([ - r, 0]$, 并定义其上范数$\parallel \cdot \parallel {C_{X, Y}} $为
$$ \left\| \phi \right\|_{{C_{X,Y}}}^2 = \left\| \phi \right\|_{{C_X}}^2 + \left\| {\phi '} \right\|_{{C_Y}}^2\;\;\;\left( {\phi \in {C_{X,Y}}} \right). $$ 设$H=L^{2}(\Omega), V=H_{0}^{1}(\Omega), A=-\Delta: D(A) \subset H \rightarrow H $且$ D(A)=H_{0}^{2}(\Omega) \cap H_{0}^{1}(\Omega)$, 并用$ (\cdot, \cdot)、(\nabla \cdot, \nabla \cdot) 、(\Delta \cdot, \Delta \cdot)$分别表示H、V、D(A)中的内积,用$\parallel \cdot \parallel 、\|\nabla \cdot\|、\|\Delta \cdot\| $分别表示H、V、D(A)中的范数.
类似于文献[11], 将算子h定义为$ h: \mathbb{R} \times C_{H} \rightarrow H$且满足
(H1)对任意的$ \xi \in C_{H}, t \in \mathbb{R} \rightarrow h(t, \xi) \in H$是连续的;
(H2)对任意的$ t \in \mathbb{R}, h(t, 0)=0$;
(H3)存在Lh>0, 使得对任意的$t \in \mathbb{R} $和$ {\xi}, {\eta} \in C_{H} $, 有
$$ \left\| {h\left( {t,\xi } \right) - h\left( {t,\eta } \right)} \right\| \le {L_h}{\left\| {\xi - \eta } \right\|_{{C_H}}}; $$ (H4)存在m0>0, Ch>0, 使得对任意的$m \in[0, \left.m_{0}\right], \tau \leqslant t, u, v \in C([\tau-r, \tau] ; H) $, 有
$$ \int_\tau ^t {{{\rm{e}}^{ms}}} {\left\| {h\left( {s,{u_s}} \right) - h\left( {s,{v_s}} \right)} \right\|^2}{\rm{d}}s \le C_h^2\int_{\tau - r}^t {{{\rm{e}}^{ms}}} {\left\| {u(s) - v(s)} \right\|^2}{\rm{d}}s. $$ 由Poincare不等式可得:存在常数λ1>0, 使得
$$ \begin{array}{l} {\lambda _1}{\left\| u \right\|^2} \le {\left\| {\nabla u} \right\|^2}\;\;\;\;\left( {u \in H_0^1(\mathit{\Omega })} \right),\\ {\lambda _1}{\left\| {\nabla u} \right\|^2} \le {\left\| {\Delta u} \right\|^2}\;\;\;\;\left( {u \in H_0^2(\mathit{\Omega })} \right), \end{array} $$ (2) 其中, λ1是-Δ在H中的第一个特征值.
下面阐述动力系统的拉回吸引子的基本概念及相关结果.
令X是完备的度量空间, 距离为d(·, ·).如果有一族定义于X上的双参数映射$ U(t, \tau): X \rightarrow X (t \geqslant \tau, \tau \in \mathbb{R})$满足:
(1) $ U(t, \tau)=U(t, r) U(r, \tau) \quad(\tau \leqslant r \leqslant t)$,
(2) $ U(\tau, \tau)=\mathrm{Id}$是一恒同算子,$\tau \in \mathbb{R} $, 则称$ U(t, \tau)$是一过程.
令P(X)是X上所有非空子集族, 令$\mathcal{D}$是非空集合族$\widetilde{D}_{0}(t)=\left\{D_{0}(t): t \in \mathbb{R}\right\} \subset P(X) $组成的非空集类.
定义1 [8] 设$\{U(t, \tau)\}_{t \geqslant \tau} $是Banach空间X上的过程, 若对任意的$ t \in \mathbb{R}$, 任意序列$ \tau_{n} \rightarrow-\infty$和$ {x_n} \in {D_0}\left( {{\tau _n}} \right), \left\{ {U(t, \tau ){x_n}} \right\}_{n = 1}^\infty $在X中有收敛子列, 则称$\{U(t, \tau)\}_{t \geqslant \tau} $为拉回$ \mathcal{D}-$渐近紧.
定义2 [8] 设$\{U(t, \tau)\}_{t \geqslant \tau} $是Banach空间X上的过程, 若对任意的$ t \in \mathbb{R}$和任意的$\widetilde{D} \in \mathcal{D} $, 存在$ \tau = \tau (t, {\rm{ }}\tilde D) \le t$, 使得
$$ U(t,\tau )D(\tau ) \subset B(t)\;\;\;\;(\tau \le \tau (t,\tilde D)), $$ 则称$\widetilde{B}(t)=\{B(t): t \in \mathbb{R}\} \in \mathcal{D} $是过程$\{U(t, \tau)\}_{t \geqslant \tau} $的拉回$ \mathcal{D}-$吸收集.
定义3 [8] 设$\{U(t, \tau)\}_{t \geqslant \tau} $是Banach空间X上的过程, 若一族集合$\tilde{A}=\{A(t): t \in \mathbb{R}\} \subset P(X) $满足
(1) 对任意的$t \in \mathbb{R}, A(t) $是紧的;
(2) $ \tilde{A}(t)$是拉回吸引的, 即对任意的有界集$B \subset X $, 任意的$t \in \mathbb{R} $, 有
$$ \mathop {\lim }\limits_{t \to \infty } {\rm{dist}}(U(t,\tau )B,A(t)) = 0; $$ (3) $ \tilde{A}(t)$是不变的, 即$ U(t, \tau )A(\tau ) = A(t)\quad ( - \infty <\tau \le t < + \infty )$,
则称$ {\tilde A}$是过程$\{U(t, \tau)\}_{t \geqslant \tau} $的拉回吸引子, 其中dist指Hausdorff半距离, 定义为:
$$ {\rm{dist}}\left( {A,B} \right) = \mathop {{\rm{sup}}}\limits_{x \in A} \mathop {{\rm{inf}}}\limits_{y \in B} d\left( {x,y} \right)\;\;\;\;\left( {A,B \subset X} \right). $$ 定义4 [8] 设$\{U(t, \tau)\}_{t \geqslant \tau} $是Banach空间X上的过程, 集合$\widetilde{D} \in \mathcal{D} $是X的任意子集, 则称
$$ \omega (\tilde D,t) = \bigcap\limits_{s \le t} {\overline {\bigcup\limits_{\tau \le s} {U(t,\tau )D{{(\tau )}^X}} } } $$ 为集合$ \widetilde{D}$在t时刻的拉回$ {\cal D} - \omega - $极限集.
定义5 [10] 设X是Banach空间, B是X中的有界子集, 在X×X中定义函数Ψ(·, ·).若对任意的序列$ \left\{x_{n}\right\}_{n=1}^{\infty} \subset B$, 都存在子序列$\left\{x_{n k}\right\}_{k=1}^{\infty} C\left\{x_{n}\right\}_{n=1}^{\infty} $, 使得
$$ \mathop {\lim }\limits_{k \to \infty } \mathop {\lim }\limits_{l \to \infty } \mathit{\Psi }\left( {{x_{nk}},{x_{nl}}} \right) = 0, $$ 则称Ψ(·, ·)是B×B上的收缩函数, B×B上的收缩函数所组成的集合记作Contr $ \widetilde{B}$.
为了得到拉回$ \mathcal{D}-$吸引子,我们需要构造一个由非空子集族所构成的集类.
定义6 若对任意的m>0, 用$ \mathcal{D}_1$表示由非空子集族$ \widetilde{D}=\{D(t): t \in \mathbb{R}\} \subset \mathcal{P}\left(C_{D(A), V}\right)$所组成的集类, 且满足
$$ \mathop {\lim }\limits_{\tau \to - \infty } \left( {{{\rm{e}}^{m\tau }}\mathop {\sup }\limits_{u \in D(\tau )} \left\| {\Delta u} \right\|_{{C_{D\left( A \right),,V}}}^2} \right) = 0. $$ 下面给出拉回$ \mathcal{D}-$吸引子的存在性的抽象结果.
引理1 [10] 设$\{U(t, \tau)\}_{t \geqslant \tau} $是Banach空间X上的过程, 若$\{U(t, \tau)\}_{t \geqslant \tau} $满足
(1) $\{U(t, \tau)\}_{t \geqslant \tau} $在X中存在拉回$ \mathcal{D}-$吸收集$ \widetilde{B}=\{B(t): t \in \mathbb{R}\} \subset \mathcal{D}$,
(2) $\{U(t, \tau)\}_{t \geqslant \tau} $在$\widetilde{B} $中拉回$ \mathcal{D}-$渐近紧,则称过程$\{U(t, \tau)\}_{t \geqslant \tau} $存在唯一的拉回$ \mathcal{D}-$吸引子$ \mathcal{A}=\{A(t): t \in \mathbb{R}\}$, 其中
$$ {\cal A} = \bigcap\limits_{s \le t} {\overline {\bigcup\limits_{\tau \le s} {U(t,\tau )B(\tau )} } } . $$ 为了考查过程$\{U(t, \tau)\}_{t \geqslant \tau} $的渐近紧性, 需要以下引理.
引理2 [10] 设$\{U(t, \tau)\}_{t \geqslant \tau} $是Banach空间X上的过程, 且$\{U(t, \tau)\}_{t \geqslant \tau} $存在$ \mathcal{D}-$吸收集$\widetilde{B}=\{B(t):t \in \mathbb{R}\} $.若对任意的ε>0, 存在$T=T(t, \widetilde{B}, \varepsilon)=t-\tau $和Ψt, T(·, ·), 使得
$$ \parallel U(t,t - T)x - U(t,t - T)y\parallel \varepsilon + {\Psi _{t,T}}\left( {x,y} \right)\;\;\left( {x,y \in B\left( \tau \right)} \right), $$ 则称$\{U(t, \tau)\}_{t \geqslant \tau} $是X上的拉回渐近紧过程, 其中Ψt, T(·, ·)依赖于t和T.
2. 主要结论
利用Fadeo-Galerkin方法和不动点理论, 给出初边值问题(1)的解的存在性和唯一性:
定理1 若函数h满足假设条件(H1)~(H4), $ f \in L_{\mathrm{loc}}^{2}(\mathbb{R} ; H) \mathbb{H}\left(\phi, \frac{\partial \phi}{\partial t}\right) \in C_{D(A), V}$, 则对任意的$\tau \in \mathbb{R} $和T> τ, 初边值问题(1)存在唯一弱解u(·)=u(·; τ, ϕ), 使得
$$ u \in C([\tau - r,T];D(A)) \cap {C^1}([\tau - r,T];V), $$ 并且映射$\left(\phi, \frac{\partial \phi}{\partial t}\right) \rightarrow\left(u, \frac{\partial u}{\partial t}\right) $在CD(A), V中连续.
由定理1, 可以定义初边值问题(1)的解过程$\{U(t, \tau)\}_{t \geqslant \tau} $:
$$ U(t,\tau )\left( {\phi ,\frac{{\partial \phi }}{{\partial t}}} \right) = \left( {u,\frac{{\partial u}}{{\partial t}}} \right):{C_{D\left( A \right),V}} \to {C_{D\left( A \right),V}}, $$ 并且过程$\{U(t, \tau)\}_{t \geqslant \tau} $在CD(A), V中连续.
为了得到初边值问题(1)的解所生成的过程$\{U(t, \tau)\}_{t \geqslant \tau} $在CD(A), V拉回吸引子的存在性, 首先需要证明下面的定理.
定理2 若函数h满足假设条件(H1)~(H4), $f \in L_{\mathrm{loc}}^{2}(\mathbb{R} ; H) $且$ \left(\phi, \frac{\partial \phi}{\partial t}\right) \in C_{D(A), V}$, 则初边值问题(1)的解$ \left(u, \frac{\partial u}{\partial t}\right)$满足
$$ \begin{array}{*{20}{c}} {\left\| {{u_t}} \right\|_{{C_{D(A),V}}}^2 \le \frac{1}{{{C_1}}}{\rho _0}{{\rm{e}}^{ - m(t - h - \tau )}} + \frac{{{C_2}}}{{{C_1}}}{{\rm{e}}^{ - m(t - h - \tau )}} + }\\ {\frac{\varepsilon }{{{C_1}}}{{\rm{e}}^{ - m(t - h)}}\int_\tau ^t {{{\rm{e}}^{\left( {\delta - {C_3}} \right)s}}} {{\left\| {f\left( {x,s} \right)} \right\|}^2}{\rm{d}}s,} \end{array} $$ 其中, $ C_{1}=\min \left\{\alpha \lambda_{1}, 1 / 2\right\}, \rho_{0}>0$是依赖于初值ε、$ \|\boldsymbol{\phi}\|_{C_{D(A)}}^{2} 、\left\|\frac{\partial \phi}{\partial t}\right\|_{V}^{2}$的常数.
证明 设$0 <\varepsilon <\min \left\{\frac{\beta \lambda_{1}}{2 \alpha}, \frac{1}{4}, \frac{\lambda_{1}}{2+\beta \lambda_{1}}, \frac{1}{2 \beta}\right\} $, 令$ v = \frac{{\partial u}}{{\partial t}} + \varepsilon u$, 则用v与方程(1)在H中作内积, 得
$$ \begin{array}{l} \frac{1}{2}\frac{{\rm{d}}}{{{\rm{d}}t}}\left[ {{{\left\| v \right\|}^2} + \alpha {{\left\| {\nabla v} \right\|}^2} + (1 - \beta \varepsilon ){{\left\| {\Delta u} \right\|}^2} + \alpha {\varepsilon ^2}{{\left\| {\nabla u} \right\|}^2}} \right] + \\ \;\;\;\;\;\;(1 - \varepsilon ){\left\| v \right\|^2} - \alpha \varepsilon {\left\| {\nabla v} \right\|^2} + \varepsilon (1 - \beta \varepsilon ){\left\| {\Delta u} \right\|^2} + \\ \;\;\;\;\;\;\varepsilon \left( {{\varepsilon ^{ - 1}}} \right)(u,v) + \alpha {\varepsilon ^3}{\left\| {\nabla u} \right\|^2} + \beta {\left\| {\Delta v} \right\|^2} = \\ \;\;\;\;\;\;\left( {h\left( {t,{u_t}} \right),v} \right) + (f(x,t),v). \end{array} $$ (3) 由Hölder不等式和Young不等式, 式(3)可变形为
$$ \begin{array}{l} \frac{1}{2}\frac{{\rm{d}}}{{{\rm{d}}t}}\left[ {{{\left\| v \right\|}^2} + \alpha {{\left\| {\nabla v} \right\|}^2} + (1 - \beta \varepsilon ){{\left\| {\Delta u} \right\|}^2} + \alpha {\varepsilon ^2}{{\left\| {\nabla u} \right\|}^2}} \right] + \\ \;\;\;\;\;\;\;\left( {1 - 2\varepsilon - \frac{1}{\varepsilon }} \right){\left\| v \right\|^2} - \alpha \varepsilon {\left\| {\nabla v} \right\|^2} + \varepsilon (1 - \beta \varepsilon ){\left\| {\Delta u} \right\|^2} + \\ \;\;\;\;\;\;\;\alpha {\varepsilon ^3}{\left\| {\nabla u} \right\|^2} + \beta {\left\| {\Delta v} \right\|^2} - \frac{\varepsilon }{4}{\left\| u \right\|^2} \le \\ \;\;\;\;\;\;\;\frac{\varepsilon }{2}{\left\| {h\left( {t,{u_t}} \right)} \right\|^2} + \frac{\varepsilon }{2}{\left\| {f\left( {x,t} \right)} \right\|^2}. \end{array} $$ (4) 由ε的限制条件可知
$$ 1 - 2\varepsilon - \frac{1}{\varepsilon } < 0, $$ $$ \frac{\beta }{2}{\left\| {\Delta v} \right\|^2} - \alpha \varepsilon {\left\| {\nabla v} \right\|^2} \ge \left( {\frac{{\beta {\lambda _1}}}{2} - \alpha \varepsilon } \right){\left\| {\nabla v} \right\|^2} > 0, $$ $$ \frac{{\varepsilon \left( {1 - \beta \varepsilon } \right)}}{2}{\left\| {\Delta u} \right\|^2} - \frac{{{\varepsilon ^2}}}{4}{\left\| u \right\|^2} \ge \left( {\frac{{\varepsilon (1 - \beta \varepsilon )\lambda _1^2}}{2} - \frac{{{\varepsilon ^2}}}{4}} \right){\left\| u \right\|^2} > 0. $$ 于是, 取$ \delta=\min \left\{\beta \lambda_{1}-\alpha \varepsilon, \frac{\beta \lambda_{1}^{2}}{1-\beta \varepsilon}, \varepsilon\right\}$, 则
$$ \frac{{\rm{d}}}{{{\rm{d}}t}}y(t) + \delta y(t) \le \frac{1}{\varepsilon }{\left\| {h\left( {t,{u_t}} \right)} \right\|^2} + \frac{1}{\varepsilon }{\left\| {f(x,t)} \right\|^2}, $$ (5) 其中, $y(t)=\|v\|^{2}+\alpha\|\nabla v\|^{2}+(1-\beta \varepsilon)\|\Delta u\|^{2}+\alpha \varepsilon^{2}\|\nabla u\|^{2} $.
在式(5)两端同时乘以eδt, 有
$$ \frac{{\rm{d}}}{{{\rm{d}}t}}{{\rm{e}}^{\delta t}}y(t) \le \frac{1}{\varepsilon }{{\rm{e}}^{\delta t}}{\left\| {h\left( {t,{u_t}} \right)} \right\|^2} + \frac{1}{\varepsilon }{{\rm{e}}^{\delta t}}{\left\| {f(x,t)} \right\|^2}. $$ (6) 对式(6)关于时间t在[τ, t]上积分, 并利用假设条件(H2)、(H4)可得
$$ \begin{array}{l} {{\rm{e}}^{\delta t}}y(t) \le {{\rm{e}}^{\delta \tau }}y(\tau ) + C_h^2\varepsilon \int_{\tau - r}^t {{{\rm{e}}^{\delta s}}} {\left\| u \right\|^2}{\rm{d}}s + \\ \;\;\;\;\frac{1}{\varepsilon }\int_\tau ^t {{{\rm{e}}^{\delta s}}} {\left\| {f(x,s)} \right\|^2}{\rm{d}}s. \end{array} $$ 由于$ y(t) \geqslant C_{1}\left[\|u\|_{D(A)}^{2}+\left\|\frac{\partial u}{\partial t}\right\|_{V}^{2}\right]$, 其中C1=min{αλ1, 1/2 }, 则
$$ \begin{array}{l} {{\rm{e}}^{\delta t}}y(t) \le {{\rm{e}}^{\delta \tau }}y(\tau ) + C_h^2\varepsilon \int_{\tau - r}^\tau {{{\rm{e}}^{\delta s}}} {\left\| u \right\|^2}{\rm{d}}s + \\ \;\;\;\;\;\;\;\;C_h^2\varepsilon \int_\tau ^t {{{\rm{e}}^{\delta s}}} {\left\| u \right\|^2}{\rm{d}}s + \frac{1}{\varepsilon }\int_\tau ^t {{{\rm{e}}^{\delta s}}} {\left\| {f(x,s)} \right\|^2}{\rm{d}}s \le \\ \;\;\;\;\;\;\;\;{{\rm{e}}^{\delta \tau }}y(\tau ) + C_h^2\varepsilon r{\left\| \phi \right\|^2}{{\rm{e}}^{\delta \tau }} + \frac{{C_h^2\varepsilon }}{{{C_1}}}\int_\tau ^t {{{\rm{e}}^{\delta s}}} y(s){\rm{d}}s + \\ \;\;\;\;\;\;\;\;\frac{1}{\varepsilon }\int_\tau ^t {{{\rm{e}}^{\delta s}}} {\left\| {f(x,s)} \right\|^2}{\rm{d}}s. \end{array} $$ (7) 令$C_{2}=C_{h}^{2} \varepsilon r\|\phi\|^{2}, C_{3}=C_{h}^{2} \varepsilon / C_{1} $, 则对式(7)在[τ, t]上利用Gronwall不等式, 有
$$ \begin{array}{l} {{\rm{e}}^{\delta t}}y(t) \le {{\rm{e}}^{\delta \tau }}y(\tau ){{\rm{e}}^{{C_3}(t - \tau )}} + {C_2}{{\rm{e}}^{\delta \tau }}{{\rm{e}}^{{C_3}(t - \tau )}} + C\int_\tau ^t {{{\rm{e}}^{\delta s}}} y(s){\rm{d}}s + \\ \;\;\;\;\;\;\;\frac{1}{\varepsilon }{{\rm{e}}^{{C_{3t}}}}\int_\tau ^t {{{\rm{e}}^{\left( {\delta - {C_3}} \right)s}}} {\left\| {f(x,s)} \right\|^2}{\rm{d}}s. \end{array} $$ 这表明:对任意的t≥ τ, 有
$$ \begin{array}{l} y(t) \le y(\tau ){{\rm{e}}^{ - \left( {\delta - {C_3}} \right)(t - \tau )}} + {C_2}{{\rm{e}}^{ - \left( {\delta - {C_3}} \right)(t - \tau )}} + \\ \;\;\;\;\;\;\varepsilon {{\rm{e}}^{\left( {\delta - {C_3}} \right)t}}\int_\tau ^t {{{\rm{e}}^{\left( {\delta - {C_3}} \right)s}}} {\left\| {f(x,s)} \right\|^2}{\rm{d}}s. \end{array} $$ (8) 由$C_{1}\left[\|u\|_{D(A)}^{2}+\left\|\frac{\partial u}{\partial t}\right\|_{V}^{2}\right] \leqslant y(t) $, 则对任意的t≥ τ, 式(8)可变形为
$$ \begin{array}{l} \left\| u \right\|_{D(A)}^2 + \left\| {\frac{{\partial u}}{{\partial t}}} \right\|_V^2 \le \frac{1}{{{C_1}}}y(\tau ){{\rm{e}}^{ - \left( {\delta - {C_3}} \right)(t - \tau )}} + \\ \;\;\;\frac{{{C_2}}}{{{C_1}}}{{\rm{e}}^{ - \left( {\delta - {C_3}} \right)(t - \tau )}} + \frac{\varepsilon }{{{C_1}}}{{\rm{e}}^{ - \left( {\delta - {C_3}} \right)t}}\int_\tau ^t {{{\rm{e}}^{\left( {\delta - {C_3}} \right)s}}} {\left\| {f(x,s)} \right\|^2}{\rm{d}}s. \end{array} $$ (9) 记m=δ-C3, 用t+θ代替式(9)中的t, 则对任意的t-h≥ τ, 有
$$ \begin{array}{l} \left\| {{u_t}} \right\|_{{C_{D(A),V}}}^2 = \left\| {{u_t}} \right\|_{D(A)}^2 + \left\| {\frac{{\partial {u_t}}}{{\partial t}}} \right\|_V^2 = \left\| {u(t + \theta )} \right\|_{D(A)}^2 + \\ \;\;\;\;\;\left\| {\frac{{\partial u(t + \theta )}}{{\partial t}}} \right\|_V^2 \le \frac{1}{{{C_1}}}{\rho _0}{{\rm{e}}^{ - m(t - h - \tau )}} + \frac{{{C_2}}}{{{C_1}}}{{\rm{e}}^{ - m(t - h - \tau )}} + \\ \;\;\;\;\;\frac{\varepsilon }{{{C_1}}}{{\rm{e}}^{ - m(t - h)}}\int_\tau ^t {{{\rm{e}}^{\left( {\delta - {C_3}} \right)s}}} {\left\| {f(x,s)} \right\|^2}{\rm{d}}s, \end{array} $$ 其中, ρ0>0是依赖于初值ε、$\|\phi\|_{C_{D(A)}}^{2} 、\left\|\frac{\partial \phi}{\partial t}\right\|_{V_{V}}^{2} $的常数.证毕.
为了得到拉回$ {{\cal D}_1} - $吸收集, 进一步假设0 < δ-C3=m,且对任意的$t \in \mathbb{R} $, 有
$$ \int_{ - \infty }^t {{{\rm{e}}^{ms}}} {\left\| {f(x,s)} \right\|^2}{\rm{d}}s < \infty . $$ (10) 接下来证明$\{U(t, \tau)\}_{t \geqslant \tau} $具有拉回$ {{\cal D}_1} - $吸收集.
定理3 若函数h满足假设条件(H1)~(H4), $f \in L_{\mathrm{loc}}^{2}(\mathbb{R} ; H) $且满足式(10), $ \left(\phi, \frac{\partial \phi}{\partial t}\right) \in C_{D(A), V}$, 则CD(A), V中以原点为中心、ρ(t)为半径的闭球族$ {{\tilde D}_1} =\left\{D(t)=\bar{B}_{C_{D(1), V}}(0, \rho(t)): t \in \mathbb{R}\right\} \in \mathcal{D}_{1}$拉回$ {{\cal D}_1} - $吸收过程$\{U(t, \tau)\}_{t \geqslant \tau} $, 其中
$$ {\rho ^2}(t) = 1 + \frac{1}{{{C_1}\varepsilon }}{{\rm{e}}^{ - m(t - h)}}\int_{ - \infty }^t {{{\rm{e}}^{ms}}} {\left\| {f(x,s)} \right\|^2}{\rm{d}}s. $$ (11) 证明 由式(9)可知${{\tilde D}_1} $拉回$ {{\cal D}_1} - $吸收过程$\{U(t, \tau)\}_{t \geqslant \tau} $.由式(10)和式(11)可知:对任意的t < 0, 当$t \to - \infty $时, 有$ \bf{e}^{m t} \rho^{2}(t) \rightarrow 0$.从而由定义6可得${{\tilde D}_1} = {{\cal D}_1} $.
下面证明$\{U(t, \tau)\}_{t \geqslant \tau} $在CD(A), V中是拉回$ {{\cal D}_1} - $渐近紧的.
定理4 若函数h满足假设条件(H1)~(H4), $f \in L_{\mathrm{loc}}^{2}(\mathbb{R} ; H) $且满足式(7), $ \left(\phi, \frac{\partial \phi}{\partial t}\right) \in C_{D(A), V}$, 则过程$\{U(t, \tau)\}_{t \geqslant \tau} $在CD(A), V中是拉回$ {{\cal D}_1} - $渐近紧的.
证明 令$ \left(u_{i}(t), \frac{\partial u_{i}(t)}{\partial t}\right)$是方程(1)对应于初值$\left(\phi_{i}(x, \theta), \frac{\partial \phi_{i}}{\partial t}(x, \theta)\right) \in D(\tau) \times D(\tau) \quad(i=1, 2 ; \theta \in $ $ [-r, 0])$的解, 令$w=u_{1}(t)-u_{2}(t) $, 则$ \left( {w(t), \frac{{\partial w(t)}}{{\partial t}}} \right)$满足
$$ \left\{ \begin{array}{l} \frac{{{\partial ^2}w}}{{\partial {t^2}}} - \alpha \Delta \frac{{{\partial ^2}w}}{{\partial {t^2}}} + \beta {\Delta ^2}\frac{{\partial w}}{{\partial t}} + {\Delta ^2}w + \frac{{\partial w}}{{\partial t}} = h\left( {t,{u_{1t}}} \right) - h\left( {t,{u_{2t}}} \right)\\ \;\;\;\;\;\;\;\;\;((x,t) \in \mathit{\Omega } \times [\tau , + \infty )),\\ {w_{\partial \mathit{\Omega }}} = {\left. {\Delta w} \right|_{\partial \mathit{\Omega }}} = 0\;\;\;\;\;(t \ge \tau - r),\\ \left( {w(x,\tau + \theta ),\frac{{\partial w}}{{\partial t}}(x,\tau + \theta )} \right) = \left( {{\phi _1}(x,\theta ) - {\phi _2}(x,\theta ),} \right.\\ \left. {\frac{{\partial {\phi _1}}}{{\partial t}}(x,\theta ) - \frac{{\partial {\phi _2}}}{{\partial t}}(x,\theta )} \right)\;\;\;(t \in [\tau - r,\tau ]). \end{array} \right. $$ (12) 定义能量泛函
$$ {E_w}(t) = \frac{1}{2}{\left\| {\frac{{\partial w}}{{\partial t}}} \right\|^2} + \frac{\alpha }{2}{\left\| {\nabla \frac{{\partial w}}{{\partial t}}} \right\|^2} + \frac{1}{2}{\left\| {\Delta w} \right\|^2}. $$ 用$ \frac{\partial w}{\partial t}$与式(12)作内积, 并利用Hölder不等式、Young不等式及式(2), 可得
$$ \frac{{\rm{d}}}{{{\rm{d}}t}}{E_w}(t) + \left( {\frac{1}{2} + \beta \lambda _1^2} \right){\left\| {\frac{{\partial w}}{{\partial t}}} \right\|^2} \le \frac{1}{2}{\left\| {h\left( {t,{u_{1t}}} \right) - h\left( {t,{u_{2t}}} \right)} \right\|^2}. $$ (13) 在式(13)两端同时乘以emt并关于时间t在[s, t]上积分, 有
$$ \begin{array}{l} {{\rm{e}}^{mt}}{E_w}(t) - {{\rm{e}}^{ms}}{E_w}(s) + \left( {\frac{1}{2} + \beta \lambda _1^2} \right)\int_s^t {{{\rm{e}}^{mr}}} {\left\| {\frac{{\partial w}}{{\partial t}}} \right\|^2}{\rm{d}}r \le \\ \;\;\;\;\;\;\;\;m\int_s^t {{{\rm{e}}^{mr}}} {E_w}(r){\rm{d}}r + \frac{1}{2}\int_s^t {{{\rm{e}}^{mr}}} {\left\| {h\left( {r,{u_{1r}}} \right) - h\left( {r,{u_{2r}}} \right)} \right\|^2}{\rm{d}}r. \end{array} $$ (14) 对式(14)关于s在[τ, t]上积分, 有
$$ \begin{array}{l} (t - \tau ){{\rm{e}}^{mt}}{E_w}(t) - \int_\tau ^t {{{\rm{e}}^{ms}}} {E_w}(s){\rm{d}}s + \left( {\frac{1}{2} + \beta \lambda _1^2} \right) \times \\ \;\;\;\;\;\;\;\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {\left\| {\frac{{\partial w}}{{\partial t}}} \right\|^2}{\rm{d}}r{\rm{d}}s \le m\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {E_w}(r){\rm{d}}r{\rm{d}}s + \\ \;\;\;\;\;\;\;\frac{1}{2}\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {\left\| {h\left( {r,{u_{1r}}} \right) - h\left( {r,{u_{2r}}} \right)} \right\|^2}{\rm{d}}r{\rm{d}}s. \end{array} $$ (15) 用-w与式(12)作内积, 并利用Hölder不等式、Young不等式及式(2)有
$$ \begin{array}{l} - \frac{{\rm{d}}}{{{\rm{d}}t}}\left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2} + \frac{\beta }{2}{{\left\| {\Delta w} \right\|}^2}} \right] + \\ \;\;\;\;\;\;\;\;{\left\| {\frac{{\partial w}}{{\partial t}}} \right\|^2} + \alpha {\left\| {\nabla \frac{{\partial w}}{{\partial t}}} \right\|^2} - \frac{3}{2}{\left\| {\Delta w} \right\|^2} \le \\ \;\;\;\;\;\;\;\;\frac{1}{{2\lambda _1^2}}{\left\| {h\left( {t,{u_{1t}}} \right) - h\left( {t,{u_{2t}}} \right)} \right\|^2}. \end{array} $$ (16) 在式(16)两端同时乘以emt并关于时间t在[s, t]上积分, 有
$$ \begin{array}{l} {{\rm{e}}^{ms}}\left[ {\left( {\frac{{\partial w}}{{\partial t}}(s),w(s)} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}}(s),\nabla w(s)} \right) + \frac{1}{2}{{\left\| {w(s)} \right\|}^2} + } \right.\\ \;\;\;\;\;\;\;\left. {\frac{\beta }{2}{{\left\| {\Delta w(s)} \right\|}^2}} \right] - {{\rm{e}}^{mt}}\left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + } \right.\\ \;\;\;\;\;\;\;\left. {\frac{1}{2}{{\left\| w \right\|}^2} + \frac{\beta }{2}{{\left\| {\Delta w} \right\|}^2}} \right] + m\int_s^t {{{\rm{e}}^{mr}}} \left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + } \right.\\ \;\;\;\;\;\;\;\left. {\left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2}} \right]{\rm{d}}r + \int_s^t {{{\rm{e}}^{mr}}} {\left\| {\frac{{\partial w}}{{\partial t}}} \right\|^2}{\rm{d}}r + \\ \;\;\;\;\;\;\;\alpha \int_s^t {{{\rm{e}}^{mr}}} {\left\| {\nabla \frac{{\partial w}}{{\partial t}}} \right\|^2}{\rm{d}}r + \frac{{m\beta - 3}}{2}\int_s^t {{{\rm{e}}^{mr}}} {\left\| {\Delta w} \right\|^2}{\rm{d}}r \le \\ \;\;\;\;\;\;\;\frac{1}{{2\lambda _1^2}}\int_s^t {{{\rm{e}}^{mr}}} {\left\| {h\left( {r,{u_{1r}}} \right) - h\left( {r,{u_{2r}}} \right)} \right\|^2}{\rm{d}}r. \end{array} $$ (17) 在式(17)两端关于s在[τ, t]上积分, 有
$$ \begin{array}{l} \int_\tau ^t {{{\rm{e}}^{ms}}} \left[ {\left( {\frac{{\partial w}}{{\partial t}}(s),w(s)} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}}(s),\nabla w(s)} \right) + \frac{1}{2}{{\left\| {w(s)} \right\|}^2} + } \right.\\ \;\;\;\;\;\left. {\frac{\beta }{2}{{\left\| {\Delta w(s)} \right\|}^2}} \right]{\rm{d}}s + (\tau - t){{\rm{e}}^{mt}}\left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + } \right.\\ \;\;\;\;\;\left. {\frac{1}{2}{{\left\| w \right\|}^2} + \frac{\beta }{2}{{\left\| {\Delta w} \right\|}^2}} \right] + \alpha \int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {\left\| {\nabla \frac{{\partial w}}{{\partial t}}} \right\|^2}{\rm{d}}r{\rm{d}}s + \\ \;\;\;\;\;m\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } \left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2}} \right]{\rm{d}}r{\rm{d}}s + \\ \;\;\;\;\;\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {\left\| {\frac{{\partial w}}{{\partial t}}} \right\|^2}{\rm{d}}r{\rm{d}}s + \frac{{m\beta - 3}}{2}\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {\left\| {\Delta w} \right\|^2}{\rm{d}}r{\rm{d}}s \le \\ \;\;\;\;\;\frac{1}{{2\lambda _1^2}}\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {\left\| {h\left( {r,{u_{1r}}} \right) - h\left( {r,{u_{2r}}} \right)} \right\|^2}{\rm{d}}r{\rm{d}}s. \end{array} $$ (18) 在式(18)两端同时乘以m/2, 并整理有
$$ \begin{array}{l} \frac{m}{2}\int_\tau ^t {{{\rm{e}}^{ms}}} \left[ {\left( {\frac{{\partial w}}{{\partial t}}(s),w(s)} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}}(s),\nabla w(s)} \right) + } \right.\\ \;\;\;\left. {\frac{1}{2}{{\left\| {w(s)} \right\|}^2} + \frac{\beta }{2}{{\left\| {\Delta w(s)} \right\|}^2}} \right]{\rm{d}}s + \frac{m}{2}(\tau - t){{\rm{e}}^{mt}}\left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + } \right.\\ \;\;\;\left. {\left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2} + \frac{\beta }{2}{{\left\| {\Delta w} \right\|}^2}} \right] + \\ \;\;\;\frac{{{m^2}}}{2}\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } \left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2}} \right]{\rm{d}}r{\rm{d}}s + \\ \;\;\;m\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {E_w}(r){\rm{d}}r{\rm{d}}s \le \frac{{5m - {m^2}\beta }}{4}\int_\tau ^t {\int_{{r_s}}^t {{{\rm{e}}^{mr}}} } {\left\| {\Delta w} \right\|^2}{\rm{d}}r{\rm{d}}s + \\ \;\;\;\;\frac{m}{{4\lambda _1^2}}\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {\left\| {h\left( {r,{u_{1r}}} \right) - h\left( {r,{u_{2r}}} \right)} \right\|^2}{\rm{d}}r{\rm{d}}s. \end{array} $$ (19) 把式(19)代入式(15)右端, 有
$$ \begin{array}{l} (t - \tau ){{\rm{e}}^{mt}}{E_w}(t) - \int_\tau ^t {{{\rm{e}}^{ms}}} {E_w}(s){\rm{d}}s + \\ \;\;\;\;\left( {\frac{1}{2} + \beta \lambda _1^2} \right)\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {\left\| {\frac{{\partial w}}{{\partial t}}} \right\|^2}{\rm{d}}r{\rm{d}}s \le \\ \;\;\;\;\frac{m}{2}(t - \tau ){{\rm{e}}^{mt}}\left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2} + } \right.\\ \;\;\;\;\left. {\frac{\beta }{2}{{\left\| {\Delta w} \right\|}^2}} \right] + \frac{{5m - {m^2}\beta }}{4}\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {\left\| {\Delta w} \right\|^2}{\rm{d}}r{\rm{d}}s - \\ \;\;\;\;\frac{m}{2}\int_\tau ^t {{{\rm{e}}^{ms}}} \left[ {\left( {\frac{{\partial w}}{{\partial t}}(s),w(s)} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}}(s),\nabla w(s)} \right) + } \right.\\ \;\;\;\;\left. {\frac{1}{2}{{\left\| {w(s)} \right\|}^2} + \frac{\beta }{2}{{\left\| {\Delta w(s)} \right\|}^2}} \right]{\rm{d}}s - \frac{{{m^2}}}{2}\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } \left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + } \right.\\ \;\;\;\;\left. {\left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2}} \right]{\rm{d}}r{\rm{d}}s + \\ \;\;\;\;\left( {\frac{1}{2} + \frac{m}{{4\lambda _1^2}}} \right)\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {\left\| {h\left( {r,{u_{1r}}} \right) - h\left( {r,{u_{2r}}} \right)} \right\|^2}{\rm{d}}r{\rm{d}}s. \end{array} $$ (20) 在式(16)两端同时乘以emt并关于时间t在[τ, t]上积分, 有
$$ \begin{array}{l} 2\int_\tau ^t {{{\rm{e}}^{ms}}} {E_w}(s){\rm{d}}s \le {{\rm{e}}^{mt}}\left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + } \right.\\ \;\;\;\;\;\;\;\left. {\frac{1}{2}{{\left\| w \right\|}^2} + \frac{\beta }{2}{{\left\| {\Delta w} \right\|}^2}} \right] - {{\rm{e}}^{m\tau }}\left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + } \right.\\ \;\;\;\;\;\;\;\left. {\left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2} + \frac{\beta }{2}{{\left\| {\Delta w} \right\|}^2}} \right] - \\ \;\;\;\;\;\;\;\;m\int_\tau ^t {{{\rm{e}}^{mr}}} \left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2}} \right]{\rm{d}}r - \\ \;\;\;\;\;\;\;\;\frac{{m{\beta ^{ - 3}}}}{2}\int_\tau ^t {{{\rm{e}}^{mr}}} {\left\| {\Delta w} \right\|^2}{\rm{d}}r + \\ \;\;\;\;\;\;\;\;\frac{1}{{2\lambda _1^2}}\int_\tau ^t {{{\rm{e}}^{mr}}} {\left\| {h\left( {r,{u_{1r}}} \right) - h\left( {r,{u_{2r}}} \right)} \right\|^2}{\rm{d}}r. \end{array} $$ (21) 把式(21)与式(20)相加并整理有
$$ \begin{array}{l} (t - \tau ){{\rm{e}}^{mt}}{E_w}(t) + \int_\tau ^t {{{\rm{e}}^{ms}}} {E_w}(s){\rm{d}}s \le \\ \;\;\;\;\;\left( {\frac{m}{2}(t - \tau ) + 1} \right){{\rm{e}}^{mt}}\left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + } \right.\\ \;\;\;\;\;\left. {\frac{1}{2}{{\left\| w \right\|}^2} + \frac{\beta }{2}{{\left\| {\Delta w} \right\|}^2}} \right] - {{\rm{e}}^{m\tau }}\left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + } \right.\\ \;\;\;\;\;\left. {\left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2} + \frac{\beta }{2}{{\left\| {\Delta w} \right\|}^2}} \right] - \\ \;\;\;\;\;\frac{{3m}}{2}\int_\tau ^t {{{\rm{e}}^{mr}}} \left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2}} \right]{\rm{d}}r - \\ \;\;\;\;\;\frac{{{m^2}}}{2}\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } \left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2}} \right]{\rm{d}}r{\rm{d}}s + \\ \;\;\;\;\;\frac{{3 - m\beta }}{2}\int_\tau ^t {{{\rm{e}}^{mr}}} {\left\| {\Delta w} \right\|^2}{\rm{d}}r + \frac{{5m - {m^2}\beta }}{4}\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {\left\| {\Delta w} \right\|^2}{\rm{d}}r{\rm{d}}s + \\ \;\;\;\;\;\left( {\frac{1}{2} + \frac{m}{{4\lambda _1^2}} + \frac{1}{{2\lambda _1^2}}} \right)\int_\tau ^t {\int_s^t {{{\rm{e}}^{mv}}} } {\left\| {h\left( {r,{u_{1r}}} \right) - h\left( {r,{u_{2r}}} \right)} \right\|^2}{\rm{d}}r{\rm{d}}s. \end{array} $$ 由假设条件(H3)可知
$$ \begin{array}{l} {E_w}(t) \le \left( {\frac{m}{2} + \frac{1}{{t - \tau }}} \right)\left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2} + } \right.\\ \;\;\;\;\left. {\frac{\beta }{2}{{\left\| {\Delta w} \right\|}^2}} \right] - \frac{{{m^2}}}{{2(t - \tau )}}{{\rm{e}}^{ - mt}}\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } \left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + } \right.\\ \;\;\;\;\left. {\frac{1}{2}{{\left\| w \right\|}^2}} \right]{\rm{d}}r{\rm{d}}s + \frac{{3 - m\beta }}{{2(t - \tau )}}{{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{mr}}} {\left\| {\Delta w} \right\|^2}{\rm{d}}r + \\ \;\;\;\;L_h^2\left( {\frac{1}{2} + \frac{m}{{4\lambda _1^2}} + \frac{1}{{2\lambda _1^2}}} \right){{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{mr}}} {\left\| {{u_1}(r) - {u_2}(r)} \right\|^2}{\rm{d}}r + \\ \;\;\;\;\frac{{5m - {m^2}\beta }}{{4(t - \tau )}}{{\rm{e}}^{ - mt}}\int_\tau ^t {\int_s^t {{{\rm{e}}^m}} } {\left\| {\Delta w} \right\|^2}{\rm{d}}r{\rm{d}}s - \frac{1}{{t - \tau }}{{\rm{e}}^{ - m(t - \tau )}}\left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + } \right.\\ \;\;\;\;\;\left. {\left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2} + \frac{\beta }{2}{{\left\| {\Delta w} \right\|}^2}} \right] - \\ \;\;\;\;\;\frac{{3m}}{{2(t - \tau )}}{{\rm{e}}^{ - m(t - \tau )}}\int_\tau ^t {{{\rm{e}}^{mr}}} \left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + } \right.\\ \;\;\;\;\;\left. {\frac{1}{2}{{\left\| w \right\|}^2}} \right]{\rm{d}}r + \frac{{L_h^2}}{m}\left( {\frac{1}{2} + \frac{m}{{4\lambda _1^2}} + \frac{1}{{2\lambda _1^2}}} \right){{\rm{e}}^{ - m(t - \tau )}}{\left\| {{\phi _1} - {\phi _2}} \right\|^2}. \end{array} $$ (22) 由Hölder不等式、式(2)及式(8), 可得
$$ \begin{array}{l} {{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{mr}}} \left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right)} \right]{\rm{d}}r \le \\ \;\;\;\;\;{\left( {{{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{ms}}} {{\left\| {\frac{{\partial w}}{{\partial t}}} \right\|}^2}{\rm{d}}s} \right)^{\frac{1}{2}}}{\left( {{{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{ms}}} {{\left\| w \right\|}^2}{\rm{d}}s} \right)^{\frac{1}{2}}} + \\ \;\;\;\;\;{\left( {{{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{ms}}} {{\left\| {\nabla \frac{{\partial w}}{{\partial t}}} \right\|}^2}{\rm{d}}s} \right)^{\frac{1}{2}}}{\left( {{{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{ms}}} {{\left\| {\nabla w} \right\|}^2}{\rm{d}}s} \right)^{\frac{1}{2}}} \le \\ \;\;\;\;\;\left( {\frac{C}{{{\lambda _1}}} + \frac{C}{{\sqrt {{\lambda _1}} }}} \right){\left( {{{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{ms}}} {{\left\| {\Delta w} \right\|}^2}{\rm{d}}s} \right)^{\frac{1}{2}}}; \end{array} $$ (23) $$ \begin{array}{l} \int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } \left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right)} \right]{\rm{d}}r{\rm{d}}s \le \\ \;\;\;\;\;(t - \tau ){\left( {{{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{ms}}} {{\left\| {\frac{{\partial w}}{{\partial t}}} \right\|}^2}{\rm{d}}s} \right)^{\frac{1}{2}}}{\left( {{{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{ms}}} {{\left\| w \right\|}^2}{\rm{d}}s} \right)^{\frac{1}{2}}} + \\ \;\;\;\;\;(t - \tau ){\left( {{{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{ms}}} {{\left\| {\nabla \frac{{\partial w}}{{\partial t}}} \right\|}^2}{\rm{d}}s} \right)^{\frac{1}{2}}}{\left( {{{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{ms}}} {{\left\| {\nabla w} \right\|}^2}{\rm{d}}s} \right)^{\frac{1}{2}}} \le \\ \;\;\;\;\;(t - \tau )\left( {\frac{C}{{{\lambda _1}}} + \frac{C}{{\sqrt {{\lambda _1}} }}} \right){\left( {{{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{ms}}} {{\left\| {\Delta w} \right\|}^2}{\rm{d}}s} \right)^{\frac{1}{2}}}; \end{array} $$ (24) $$ {{\rm{e}}^{ - mt}}\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {\left\| {\Delta w} \right\|^2}{\rm{d}}r{\rm{d}}s \le (t - \tau ){{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{ms}}} {\left\| {\Delta w} \right\|^2}{\rm{d}}s. $$ (25) 结合式(23)~(25), 设T=t- τ且
$$ \begin{array}{l} {\mathit{\Psi }_{t,T}}\left( {\left( {{u_1},\frac{{\partial {u_1}}}{{\partial t}}} \right),\left( {{u_2},\frac{{\partial {u_2}}}{{\partial t}}} \right)} \right) = \\ \;\;\;\;\;\left( {\frac{m}{2} + \frac{1}{{t - \tau }}} \right)\left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2} + } \right.\\ \;\;\;\;\;\left. {\frac{\beta }{2}{{\left\| {\Delta w} \right\|}^2}} \right] - \frac{{{m^2}}}{{2(t - \tau )}}{{\rm{e}}^{ - mt}}\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } \left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + } \right.\\ \;\;\;\;\;\left. {\left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2}} \right]{\rm{d}}r{\rm{d}}s + \frac{{3 - m\beta }}{{2(t - \tau )}}{{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{mr}}} {\left\| {\Delta w} \right\|^2}{\rm{d}}r + \\ \;\;\;\;\;L_h^2\left( {\frac{1}{2} + \frac{m}{{4\lambda _1^2}} + \frac{1}{{2\lambda _1^2}}} \right){{\rm{e}}^{ - mt}}\int_\tau ^t {{{\rm{e}}^{mr}}} {\left\| {{u_1}(r) - {u_2}(r)} \right\|^2}{\rm{d}}r + \\ \;\;\;\;\;\frac{{5m - {m^2}\beta }}{{4(t - \tau )}}{{\rm{e}}^{ - mt}}\int_\tau ^t {\int_s^t {{{\rm{e}}^{mr}}} } {\left\| {\Delta w} \right\|^2}{\rm{d}}r{\rm{d}}s - \frac{1}{{t - \tau }}{{\rm{e}}^{ - m(t - \tau )}} \times \\ \;\;\;\;\;\;\left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + \frac{1}{2}{{\left\| w \right\|}^2} + \frac{\beta }{2}{{\left\| {\Delta w} \right\|}^2}} \right] - \\ \;\;\;\;\;\;\frac{{3m}}{{2(t - \tau )}}{{\rm{e}}^{ - m(t - \tau )}}\int_\tau ^t {{{\rm{e}}^{mr}}} \left[ {\left( {\frac{{\partial w}}{{\partial t}},w} \right) + \left( {\nabla \frac{{\partial w}}{{\partial t}},\nabla w} \right) + } \right.\\ \;\;\;\;\;\;\left. {\frac{1}{2}{{\left\| w \right\|}^2}} \right]{\rm{d}}r, \end{array} $$ (26) 则式(22)可以变形为
$$ \begin{array}{l} {E_w}(t) \le \frac{{L_h^2}}{m}\left( {\frac{1}{2} + \frac{m}{{4\lambda _1^2}} + \frac{1}{{2\lambda _1^2}}} \right){{\rm{e}}^{ - m(t - \tau )}}{\left\| {{\phi _1} - {\phi _2}} \right\|^2} + \\ \;\;\;\;\;\;\;{\mathit{\Psi }_{t,T}}\left( {\left( {{u_1},\frac{{\partial {u_1}}}{{\partial t}}} \right),\left( {{u_2},\frac{{\partial {u_2}}}{{\partial t}}} \right)} \right). \end{array} $$ 因而, 可以选取$ \tau_{0}=\tau_{0}\left(t, \widetilde{D}_{1}, \varepsilon\right) <t$, 使得对任意的$ \left(\phi_{i}, \frac{\partial \phi_{i}}{\partial t}\right) \in D(\tau) \times D(\tau)(i=1, 2)$, 有
$$ {E_w}(t) \le \varepsilon + {\mathit{\Psi } _{t,T}}\left( {\left( {{u_1},\frac{{\partial {u_1}}}{{\partial t}}} \right),\left( {{u_2},\frac{{\partial {u_2}}}{{\partial t}}} \right)} \right). $$ 下面只需验证由式(26)所定义的函数$\Psi_{t, T}\left(\left(u_{1}, \frac{\partial u_{1}}{\partial t}\right), \left(u_{2}, \frac{\partial u_{2}}{\partial t}\right)\right) $为D(τ)×D(τ)上的收缩函数.
设$ \left(u_{m}, \frac{\partial \phi_{m}}{\partial t}\right)$是方程(1)对应于初值$ \left( {{\phi _m}, \frac{{\partial {\phi _m}}}{{\partial t}}} \right) \in D(\tau ) \times D(\tau )\quad (m = 1, 2, \cdots )$的解.对任意给定的$ t \in \mathbb{R}$, 由于D(t)×D(t)在CD(A), V中有界, 从而对任意的$s \in \left[ {\tau , t} \right] $和任意的$ m \in \mathbb{N}$, 有
$$ {\left\| {\left( {{u_m},\frac{{\partial {u_m}}}{{\partial t}}} \right)} \right\|_{{C_{D(A),V}}}} \le {C_{t,\tau }} < + \infty , $$ 其中,Ct, τ 依赖于t和τ.
由定理2的证明可知:um在$L^{2}(\tau, t ; D(A)) $中强收敛到$u ; \frac{\partial u_{m}}{\partial t} $在$L^{2}(\tau, t ; V) $中强收敛到$\frac{\partial u}{\partial t} ; u_{m} $在$L^{\infty}(\tau, t ; D(A)) $中弱*-收敛到$ u: \frac{\partial u_{m}}{\partial t}$在$L^{2}(\tau, t ; V) $中弱*-收敛到$\frac{{\partial u}}{{\partial t}} $.于是
$$ \mathop {\lim }\limits_{n \to \infty } \mathop {\lim }\limits_{m \to \infty } \int_\tau ^t {{{\left\| {\Delta {u_m} - \Delta {u_n}} \right\|}^2}} {\rm{d}}r = 0; $$ $$ \mathop {\lim }\limits_{n \to \infty } \mathop {\lim }\limits_{m \to \infty } \int_\mathit{\Omega } {\left( {\frac{{\partial {u_m}}}{{\partial t}} - \frac{{\partial {u_n}}}{{\partial t}}} \right)} \left( {{u_m} - {u_n}} \right) = 0; $$ $$ \mathop {\lim }\limits_{n \to \infty } \mathop {\lim }\limits_{m \to \infty } \int_\mathit{\Omega } {\left( {\nabla \frac{{\partial {u_m}}}{{\partial t}} - \nabla \frac{{\partial {u_n}}}{{\partial t}}} \right)} \left( {\nabla {u_m} - \nabla {u_n}} \right) = 0. $$ 因而, $ \Psi_{t, T}\left(\left(u_{1}, \frac{\partial u_{1}}{\partial t}\right), \left(u_{2}, \frac{\partial u_{2}}{\partial t}\right)\right)$上的收缩函数.由引理1可知过程$\{U(t, \tau)\}_{t \geqslant \tau} $在CD(A), V中是拉回$ {{\cal D}_1} - $渐近紧的.
因而, 由定理1~定理4和引理2可得:
定理5 若函数h满足假设条件(H1)~(H4), $f \in L_{\mathrm{loc}}^{2}(\mathbb{R} ; H) $且满足式(8), $ \left(\phi, \frac{\partial \phi}{\partial t}\right) \in C_{D(A), V}$, 则过程$\{U(t, \tau)\}_{t \geqslant \tau} $在CD(A), V中存在唯一的拉回$ {{\cal D}_1} - $吸引子$\mathcal{A}_1 $, 并以CD(A), V-范数拉回$ {{\cal D}_1} - $吸引CD(A), V中每个集合$ \widetilde{D}_{1} \in \mathcal{D}_{1}$.
-
[1] POLAT N, ERTAS A. Existence and blow up of solution of Cauchy problem for generalized damped multidimensional Boussinesq[J]. Journal of Mathematical Analysis and Applications, 2008, 349(1):10-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b90f553a0de8a553c045335b8b58b02f
[2] WANG H W, WANG S B. Global existence and asymptotic behavior of solution for the Rosenau equation with hydrodynamical damped term[J]. Journal of Mathematical Analysis and Applicationsl, 2013, 401(2):763-773. doi: 10.1016/j.jmaa.2012.12.069
[3] XU R Z, LIU Y C, YU T. Global existence of solution for Cauchy problem of multidimensional generalized double dis-persion equations[J]. Nonlinear Ayalysis:Theory, Methods & Applications, 2009, 71(10):4977-4983.
[4] 任永华, 张建文.非自治强阻尼梁方程的渐近行为[J].太原理工大学学报, 2013, 44(1):116-118. doi: 10.3969/j.issn.1007-9432.2013.01.028 REN Y H, ZHANG J W. Asymptotic behavior for non-autonomous strongly damped Beam equation[J]. Journal of Taiyuan University of Technology, 2013, 44(1):116-118. doi: 10.3969/j.issn.1007-9432.2013.01.028
[5] YU J L, SHANG Y D, DI H F. On decay and blow-up of solutions for a nonlinear beam equation with double dam- ping terms[J/OL]. Boundary Value Problem, (2018-09-24)[2019-03-13]. https: //doi.org/10.1186/s13661-018-1067-y.
[6] CHARAO R C, IKEHTA R. Remarks on the decay rate of the energy for damped modified Boussinesq-Beam equations on the 1-D half line[J]. Funkcialaj Ekvacioj-serio Internacia, 2017, 60(2):239-257. doi: 10.1619/fesi.60.239
[7] ZHENG P S, LENG L H. Limiting behavior of blow-up solutions for the cubic nonlinear beam equation[J/OL]. Boundary Value Problems, (2018-11-06)[2019-03-13]. https: //doi.org/10.1186/s13661-018-1089-5.
[8] CARVALHO A N, LANGA J A, ROBINSON J C. Attrac-tors for infinite-demensional non-autonomous dynamical systems[M]. New York: Springer, 2013.
[9] 林俊宇, 龚伟华, 徐晓杰.液晶流方程在弱Lp空间中的解的存在性[J].华南师范大学学报(自然科学版), 2019, 51(1):97-103. http://journal-n.scnu.edu.cn/article/id/4511 LIN J Y, GONG W H, XU X J. On the existence of solutions to the nematic liquid crystal flow in weak-LP spaces[J]. Journal of South China Normal University(Natural Science Edition), 2019, 51(1):97-103. http://journal-n.scnu.edu.cn/article/id/4511
[10] WANG Y H. Pullback attractors for nonautonomous wave equations with critical exponent[J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 68(2):365-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ada81894507b11f539921b040ced780
[11] TEMAM R. Infinite dimensional dynamical systems in mechanics and physics[M]. New York: Springer, 1997.
[12] 郭金勇.一类四阶非线性抛物方程弱解的存在性[J].华南师范大学学报(自然科学版), 2013, 45(5):23-26. http://journal-n.scnu.edu.cn/article/id/3201 GUO J Y. The existence of weak solutions for a class of fourth order nonlinear parabolic equation[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(5):23-26. http://journal-n.scnu.edu.cn/article/id/3201
[13] GARCA-LUENGO J, MARN-RIO P, REAL J. Pullback attractors in V for non-autonomous 2D-Navier-Stokes equations and their tempered behaviour[J]. Journal of Differential Equations, 2012, 252(8):4333-4356. doi: 10.1016/j.jde.2012.01.010
[14] ZHU K X, SUN C Y. Pullback attractors for nonclassical diffusion equations with delays[J]. Journal of Mathematical Physics, 2015, 56(9):092703/1-20. doi: 10.1063/1.4931480
[15] LU Z, YANG M H, ZHANG C J. Dynamics for the damped Boussinesq equation with delay[J]. Stochastics and Dynamics, 2016, 16(6):1650021/1-11. doi: 10.1142/S0219493716500210
[16] WANG Y H. Pullback attractors for nonautonomous wave equations with critical exponent[J]. Nonlinear Analysis:Theory, Methods & Applications, 2008, 68(2):365-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6ada81894507b11f539921b040ced780
[17] 徐茜, 李晓军.带非线性阻尼非自治波方程拉回吸引子的存在性[J].黑龙江大学自然科学学报, 2014, 31(3):306-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljdxzrkxxb201403006 XU Q, LI X J. The existence of pullback attractors for non-autonomous wave quations with nonlinear damping[J]. Journal of Natural Science of Heilongjiang University, 2014, 31(3):306-314. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hljdxzrkxxb201403006
-
期刊类型引用(2)
1. 徐瑰瑰,王利波,李光辉. 非自治时滞Boussinesq-Beam方程的解的适定性. 科学技术创新. 2022(35): 77-80 . 百度学术
2. 高云龙,林荣瑞,佘连兵,李爱静. 带有强阻尼时滞项的m-Laplacian型波方程解的爆破. 华南师范大学学报(自然科学版). 2021(01): 94-99 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 1959
- HTML全文浏览量: 878
- PDF下载量: 54
- 被引次数: 3