• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
YU Dayong, GAO Hongyan, CAO He, LU Xuan, SHI Liying. The Effect of Chaetoglobosins E on the Proliferation and Apoptosis of MCF-7 Cells and the Related Mechanisms[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 61-69. DOI: 10.6054/j.jscnun.2022010
Citation: YU Dayong, GAO Hongyan, CAO He, LU Xuan, SHI Liying. The Effect of Chaetoglobosins E on the Proliferation and Apoptosis of MCF-7 Cells and the Related Mechanisms[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(1): 61-69. DOI: 10.6054/j.jscnun.2022010

The Effect of Chaetoglobosins E on the Proliferation and Apoptosis of MCF-7 Cells and the Related Mechanisms

More Information
  • Received Date: March 02, 2021
  • Available Online: March 13, 2022
  • To explore the effect of Chaetoglobosins E (ChE) on tumor cell proliferation and apoptosis, human breast cancer MCF-7 cells, human bladder cancer T-24 cells, human melanoma C8161 cells and human leukemia U937 cells were treated with ChE of different concentrations for 24 h or 48 h. The MTT method was used to detect the proliferation of 4 kinds of tumor cells. To further study its mechanism of action, the Hoechst 33342 staining was used to observe the changes in the morphology of MCF-7 cells treated with ChE. Flow cytometry was used to detect the changes of apoptosis, cycle, reactive oxygen species and mitochondrial membrane potential of MCF-7 cells treated with ChE. The Western Blot method was used to detect the expression of apoptosis-related proteins in MCF-7 cells. The results showed that ChE inhibited the proliferation of MCF-7, T-24, C8161 and U937 cells in a time- and dose-dependent manner. Among the four tumor cells, ChE had the strongest inhibitory effect on the proliferation of MCF-7 with IC50 of 82.04±7.01 μmol/L and 49.87±2.28 μmol/L at 24 h and 48 h, respectively. The Hoechst 33342 staining found that the number of apoptotic MCF-7 cells gradually increased, with significant characteristics of cell apoptosis and the volume of the nucleus was reduced, with the nucleus lysed and accompanied by apoptotic bodies with the increase of ChE concentration. The flow cytometry found that, after MCF-7 cells were treated with ChE, the number of apoptosis cells increased, the cell cycle was changed, the reactive oxygen species increased, and the mitochondrial membrane potential decreased. The Western Blot experiment found that the expression of Bid and Caspase 3 protein decreased and cleaved Caspase 3 and the ratio of Bax protein to Bcl-2 protein expression increased. To sum up, ChE-induced apoptosis of MCF-7 cells is related to the Caspase-dependent mitochondrial pathway.
  • [1]
    KEEGAN T H M, BLEYER A, ROSENBERG A S, et al. Second primary malignant neoplasms and survival in adolescent and young adult cancer survivors[J]. JAMA Oncology Reports, 2017, 3(11): 1554-1557. doi: 10.1001/jamaoncol.2017.0465
    [2]
    SRIVASTAVA S, KOAY E J, BOROWSKY A D, et al. Cancer overdiagnosis: a biological challenge and clinical dilemma[J]. Nature Reviews Cancer, 2019, 19(6): 349-358. doi: 10.1038/s41568-019-0142-8
    [3]
    GÖKALP F. The inhibition effect of natural food supplement active ingredients on TP63 carcinoma cell[J]. Medical Oncology, 2020, 37(12): 1-4. https://pubmed.ncbi.nlm.nih.gov/33222005/
    [4]
    KICHA A A, MALYARENKO T V, KALINOVSKY A I, et al. Polar steroid compounds from the Arctic starfish Asterias microdiscus and their cytotoxic properties against normal and tumor cells in vitro[J]. Natural Product Research, 2020, 18(20): 1-8.
    [5]
    CAPARICA R, BRANDÃO M, PICCART M. Systemic treatment of patients with early breast cancer: recent updates and state of the art[J]. Breast, 2019, 48(Suppl 1): S7-S20.
    [6]
    ABD R, OUF S A, GABR M M, et al. Escherichia coli foster bladder cancer cell line progression via epithelial mesenchymal transition, stemness and metabolic reprogramming[J]. Scientific Reports, 2020, 10(1): 1-11. doi: 10.1038/s41598-019-56847-4
    [7]
    MCS W, FDH F, LEUNG C, et al. The global epidemiology of bladder cancer: a joinpoint regression analysis of its incidence and mortality trends and projection[J]. Scientific Reports, 2018, 8(1): 1-12. https://www.nature.com/articles/s41598-018-19199-z
    [8]
    YU X, AMBROSINI G, ROSZIK J, et al. Genetic analysis of the 'uveal melanoma' C918 cell line reveals atypical BRAF and common KRAS mutations and single tandem repeat profile identical to the cutaneous melanoma C8161 cell line[J]. Pigment Cell Melanoma Research, 2015, 28(3): 357-359. doi: 10.1111/pcmr.12345
    [9]
    WEITMAN E S, PEREZ M, THOMPSON J F, et al. Quality of life patient-reported outcomes for locally advanced cutaneous melanoma[J]. Melanoma Research, 2018, 28(2): 134-142. doi: 10.1097/CMR.0000000000000425
    [10]
    JAKAB Z, JUHASZ A, NAGY C, et al. Trends and territorial inequalities of incidence and survival of childhood leukaemia and their relations to socioeconomic status in Hungary, 1971-2015[J]. European Journal of Cancer Prevention, 2017, 26: S183-S190. doi: 10.1097/CEJ.0000000000000386
    [11]
    IZUTSU K, YAMAMOTO K, KATO K, et al. Phase 1/2 study of venetoclax, a BCL-2 inhibitor, in Japanese patients with relapsed or refractory chronic lymphocytic leukemia and small lymphocytic lymphoma[J]. International Journal of Hematology, 2021, 113(3): 1-11.
    [12]
    KNUDSEN P B, HANNA B, OHL S, et al. Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic leukemia cells by targeting the cytoskeleton[J]. Leukemia, 2014, 28(6): 1289-1298. doi: 10.1038/leu.2013.360
    [13]
    CURLESS B P, UKO N E, MATESIC D F. Modulator of the PI3K/Akt oncogenic pathway affects mTOR complex 2 in human adenocarcinoma cells[J]. Investigational New Drugs, 2019, 37(5): 902-911. doi: 10.1007/s10637-018-0705-7
    [14]
    HUA C, YANG Y, SUN L, et al. Chaetoglobosin F, a small molecule compound, possesses immunomodulatory properties on bone marrow-derived dendritic cells via TLR9 signaling pathway[J]. Immunobiology, 2013, 218(3): 292-302. doi: 10.1016/j.imbio.2012.05.015
    [15]
    YAN W, CAO L L, ZHANG Y Y, et al. New metabolites from endophytic fungus Chaetomium globosum CDW7[J]. Molecules, 2018, 23(11): 1-7. https://pubmed.ncbi.nlm.nih.gov/30400338/
    [16]
    CHEN C M, ZHU H C, WANG J P, et al. Armochaetoglobins K-R, anti-HIV pyrrole-based cytochalasans from chaetomium globosum TW1-1[J]. European Journal of Organic Chemistry, 2015, 14: 3086-3094.
    [17]
    LUO X W, GAO C H, LU H M, et al. Chaetomium globosum HPLC-DAD-guided isolation of diversified chaetoglobosins from the coral-associated fungus C2F17[J]. Molecules, 2020, 25(5): 1-9.
    [18]
    赖丽梨, 靳焕, 段华英, 等. 巨噬细胞增强宫颈癌细胞对SN-38的抗性[J]. 华南师范大学学报(自然科学版), 2021, 53(1): 63-69. doi: 10.6054/j.jscnun.2021010

    LAI L L, JIN H, DUAN H Y, et al. Macrophage's promotion of cervical cancer cell resistance to SN-38[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(1): 63-69. doi: 10.6054/j.jscnun.2021010
    [19]
    LI B, GAO Y, RANKIN G O, et al. Chaetoglobosin kinduces apoptosis and G2 cell cycle arrest through p53-dependent pathway in cisplatin-resistant ovarian cancer cells[J]. Cancer Letters, 2015, 356: 418-433. doi: 10.1016/j.canlet.2014.09.023
    [20]
    MA Y, XIU Z, ZHOU Z, et al. Cytochalasin H inhibits angiogenesis via the suppression of HIF-1α protein accumulation and VEGF expression through PI3K/AKT/P70S6K and ERK1/2 signaling pathways in non-small cell lung cancer cells[J]. Journal of Cancer Research Clinical Oncology, 2019, 10(9): 1997-2005.
    [21]
    张健明, 司徒伟勤, 宋志华, 等. 多西环素对体外人小细胞肺癌H446细胞增殖的影响及其机制[J]. 国际药学研究杂志, 2017, 44(1): 47-51.

    ZHANG J M, SITU W Q, SONG Z H, et al. Effect of doxycycline on the proliferation of human small cell lung cancer H446 cells in vitro and its mechanisms[J]. Journal of International Pharmaceutical Research, 2017, 44(1): 47-51.
    [22]
    MILLER K D, NOGUEIRA L, MARIOTTO A B, et al. Cancer treatment and survivorship statistics, 2019[J]. CA: A Cancer Journal for Clinicians, 2019, 69(5): 1-23.
    [23]
    LI S, XIE Y, YANG B, et al. MicroRNA-214 targets COX-2 to antagonize indoxyl sulfate (IS)-induced endothelial cell apoptosis[J]. Apoptosis, 2020, 25(6): 92-104.
    [24]
    UZDENSKY A B. Apoptosis regulation in the penumbra after ischemic stroke: expression of pro- and antiapoptotic proteins[J]. Apoptosis, 2019, 24(Suppl 2): 1-16. doi: 10.1007/s10495-019-01556-6
    [25]
    LI R, JIA Z, TRUSH M A. Defining ROS in biology and medicine[J]. Reactive Oxygen Species, 2016, 1(1): 9-21. https://pubmed.ncbi.nlm.nih.gov/29707643/
    [26]
    ZHAO R, YU Q, HOU L, et al. Cadmium induces mitochondrial ROS inactivation of XIAP pathway leading to apoptosis in neuronal cells[J]. The International Journal of Biochemistry & Cell Biology, 2020, 121: 1-13. https://pubmed.ncbi.nlm.nih.gov/32035180/
    [27]
    欧单凤, 陈春霞, 马晓冬, 等. 白藜芦醇诱导HepG2细胞凋亡中线粒体差异蛋白鉴定[J]. 华南师范大学学报(自然科学版), 2017, 49(5): 59-63. http://journal-n.scnu.edu.cn/article/id/4126

    OU D F, CHEN C X, MA X D, et al. Analysis of mitochondrial proteome in apoptosis of HepG2 cells induced by resveratrol[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(5): 59-63. http://journal-n.scnu.edu.cn/article/id/4126
    [28]
    LI D D, LUO Z, CHEN G H, et al. Identification of apoptosis-related genes Bcl2 and Bax from yellow catfish Pelteobagrus fulvidraco and their transcriptional responses to waterborne and dietborne zinc exposure[J]. Gene, 2017, 633: 1-8. doi: 10.1016/j.gene.2017.08.029
    [29]
    LIN Y C, LIN J F, TSAI T F, et al. Tumor suppressor miRNA-204-5p promotes apoptosis by targeting Bcl2 in prostate cancer cells[J]. Asian Journal of Surgery, 2017, 40(5): 396-406. doi: 10.1016/j.asjsur.2016.07.001
    [30]
    REKHA K R, SELVAKUMAR G P. Gene expression regulation of Bcl2, Bax and cytochrome-C by geraniol on chronic MPTP/probenecid induced C57BL/6 mice model of Parkinson's disease[J]. Chemico-Biological Interactions, 2014, 217: 57-66. doi: 10.1016/j.cbi.2014.04.010
  • Related Articles

    [1]LÜ Yetong, QIN Yexia, WANG Mei, YANG Shuaijun, ZHANG Lei. The Influence and Mechanism of Grain Size on the Reliability of Multilayer Ceramic Capacitors[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(3): 1-8. DOI: 10.6054/j.jscnun.2024031
    [2]HU Yu, ZHANG Nan, PAN Xiaobin, ZHANG Dong, LI Li, LI Shiying, ZHANG Lingfan. Effect of Anions on Removal Efficiency of Green Synthesized Iron Nanoparticles[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(6): 63-70. DOI: 10.6054/j.jscnun.2023079
    [3]JING Hua, JI Lili, ZHOU Yarui, GUO Jian, SUN Jiaxin, LU Shiyao. Green Synthesized ZnO Nanoparticles from Spartina alterniflora and their Photocatalytic and Antibacterial Properties[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 24-29. DOI: 10.6054/j.jscnun.2022022
    [4]ZHANG Cheng, LI Ming. The Effect of Rashba Spin-Orbital Coupling on Electronic Spin Susceptibility[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 26-30. DOI: 10.6054/j.jscnun.2020074
    [5]WANG Yuchun, LIU Zhaorong, TAN Chao, SUN Hong, LI Zhong. The Effect of the Support Grain Size on the Catalytic Performance of the CuY Catalyst[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 37-42. DOI: 10.6054/j.jscnun.2020058
    [6]WANG Xi, DONG Haitai, SHI Siqi, CHEN Kexin, LI Laisheng, DU Xuan. Fabrication of a Cu_2O/(rGO-TiO_2) Composite Film for Efficient Photocatalytic Hydrogen Production[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(4): 37-43. DOI: 10.6054/j.jscnun.2018063
    [7]YI Y Q, FANG Z Q. Enhanced Mineralization of Metronidazole by Synergism of Hydrogen Peroxide and Nanoscale Zero-Valent Iron[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(1): 28-32. DOI: 10.6054/j.jscnun.2018016
    [8]LI Haijie*. Performance Improvement of Microbial Fuel Cell for Electricity Generation by Composite Graphene-Carbon Nano-Tube Modified Anode[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(4): 45-49. DOI: 10.6054/j.jscnun.2015.12.018
    [9]Simulation investigation on the generation of waste gas from municipal sewerage system: The case of catering sewage﹡[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(2).
    [10]Fractal dimensions of soil particles and related affecting factors from the valley of upper Minjiang River[J]. Journal of South China Normal University (Natural Science Edition), 2011, 0(1).
  • Cited by

    Periodical cited type(7)

    1. 洪森荣,朱盈盈,李紫莹,胡明艳,欧阳克蕙. 盐胁迫下金花菜和紫花苜蓿试管苗的转录组分析及其耐盐基因筛选. 中国农学通报. 2023(03): 111-118 .
    2. 王星哲,武悦,王艺煊,王瑞莲,周文新,李瑞莲,陈阳. 玉米发芽期响应盐胁迫的转录组分析. 分子植物育种. 2023(02): 370-378 .
    3. 董亚茹,聂玉霞,李云芝,赵东晓,耿兵,王照红. 瞬时过表达MnERF2基因对桑树耐盐性的影响. 山东农业科学. 2022(04): 9-16 .
    4. 辛建攀,李燕,赵楚,田如男. 镉胁迫下梭鱼草叶片转录组测序及苯丙烷代谢途径相关基因挖掘. 生物技术通报. 2022(06): 198-210 .
    5. 张超,马晓丽,卢晓峰,李刚,耿怡爽,孙云保,杨修一,耿计彪. 盐分胁迫下土施甲哌■对棉苗叶片生理和根系形态的影响. 江苏农业科学. 2022(22): 81-86 .
    6. 陈静,陈芸,热依麦阿依·阿布都艾尼,方志刚,凯迪日耶·玉苏普,马刘峰. 月季插穗不定根起始的转录组分析和关键基因筛选. 华南师范大学学报(自然科学版). 2021(03): 54-63 .
    7. 洪森荣,陈轩宇,李文丽,张座栋,刘军,刘佳,蔡红,陈荣华. 盐胁迫对怀玉山三叶青2个栽培种试管苗生理特性和次生代谢产物的影响. 山东农业科学. 2021(09): 38-45 .

    Other cited types(5)

Catalog

    Article views (476) PDF downloads (109) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return