• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
JING Hua, JI Lili, ZHOU Yarui, GUO Jian, SUN Jiaxin, LU Shiyao. Green Synthesized ZnO Nanoparticles from Spartina alterniflora and their Photocatalytic and Antibacterial PropertiesJ. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 24-29. DOI: 10.6054/j.jscnun.2022022
Citation: JING Hua, JI Lili, ZHOU Yarui, GUO Jian, SUN Jiaxin, LU Shiyao. Green Synthesized ZnO Nanoparticles from Spartina alterniflora and their Photocatalytic and Antibacterial PropertiesJ. Journal of South China Normal University (Natural Science Edition), 2022, 54(2): 24-29. DOI: 10.6054/j.jscnun.2022022

Green Synthesized ZnO Nanoparticles from Spartina alterniflora and their Photocatalytic and Antibacterial Properties

  • The sol-gel method was used to green synthesize ZnO nanoparticles (Nano-ZnO) with Spartina alterniflora(SAF) leaf extract, and the surface morphology, active groups, crystal structure and light absorption characteristics were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), and the photocatalytic degradation activity of Nano-ZnO on Malachite green (MG) and the antibacterial properties of Staphylococcus aureus were analyzed. The results show that the green synthesis of Nano-ZnO with SAF extract has abundant oxygen-containing active groups, smaller particle size and good dispersibility. The calculated band gap energy of Nano-ZnO is 3.09 eV, which indicates that its efficiency of light absorption and utilization has been improved. The degradation efficiency of Nano-ZnO on malachite green reaches 98.2% in visible light, h+ and ·O2- are the main active species that play a role in the photocatalytic degradation process. The antibacterial rate of Nano-ZnO against Staphylococcus aureus is twice that of ZnO. This study provides a new way for the high-value utilization of SAF and a new method for the preparation of nano-metal oxides.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return