Processing math: 100%

正交投影的子矩阵

许俊莲

许俊莲. 正交投影的子矩阵[J]. 华南师范大学学报(自然科学版), 2011, (3).
引用本文: 许俊莲. 正交投影的子矩阵[J]. 华南师范大学学报(自然科学版), 2011, (3).
Submatrix of Orthogonal Projection[J]. Journal of South China Normal University (Natural Science Edition), 2011, (3).
Citation: Submatrix of Orthogonal Projection[J]. Journal of South China Normal University (Natural Science Edition), 2011, (3).

正交投影的子矩阵

基金项目: 

陕西省宝鸡文理学院院级重点科研项目(ZK08107)

详细信息
    通讯作者:

    许俊莲

Submatrix of Orthogonal Projection

  • 摘要:H是n维复Hilbert空间,Q是定义在H上的正交投影. 任给H的子空间M, 设dimM=r, 在空间分解 H=MM下, Q=(ABBD), 其中AB(M),BB(M,M),DB(M). 利用算子分块的技巧, 对空间进一步分解, 讨论了Q的子矩阵A,B,D的性质及其之间的关系, 并进一步讨论了M上的正交投影PQ之间的关系. 得到了(i) R(P)R(Q)=\{0\}dimR(A)=dimR(B), (ii) R(P)+R(Q)=HdimR(D)=nr, (iii) R(P)R(Q)dimR(A)=0.}
    Abstract: Let H be a n-dimensional complex Hilbert space, and Q be an orthogonal projection on H. If M is a subspace of H and dimM=r, then under the space decomposition H=MM, Q=(ABBD),where AB(M),BB(M,M),DB(M). In this paper, using of the technique of block operator matrix, the properties and relations between A,B and D are given. Furtherly, the relations between P and Q are discussed, where P is an orthogonal projection on M, (i) R(P)R(Q)=\{0\}dimR(A)=dimR(B), (ii) R(P)+R(Q)=HdimR(D)=nr, (iii) R(P)R(Q)dimR(A)=0 are obtained.
计量
  • 文章访问数:  1598
  • HTML全文浏览量:  127
  • PDF下载量:  411
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-07
  • 修回日期:  2010-09-24
  • 刊出日期:  2011-08-24

目录

    /

    返回文章
    返回