无环的本原反对称带号有向图的局部基与基指数

易叔勇, 尤利华

易叔勇, 尤利华. 无环的本原反对称带号有向图的局部基与基指数[J]. 华南师范大学学报(自然科学版), 2011, (1).
引用本文: 易叔勇, 尤利华. 无环的本原反对称带号有向图的局部基与基指数[J]. 华南师范大学学报(自然科学版), 2011, (1).
The local bases and bases of primitive anti-symmetric signed digraphs with no loops[J]. Journal of South China Normal University (Natural Science Edition), 2011, (1).
Citation: The local bases and bases of primitive anti-symmetric signed digraphs with no loops[J]. Journal of South China Normal University (Natural Science Edition), 2011, (1).

无环的本原反对称带号有向图的局部基与基指数

基金项目: 

国家自然科学基金项目;高等学校博士学科点专项科研基金项目

详细信息
    通讯作者:

    尤利华

  • 中图分类号: 

    O151.21

The local bases and bases of primitive anti-symmetric signed digraphs with no loops

  • 摘要: n阶无环的本原反对称带号有向图S的局部基lS(k), 得到了lS(k)max{n + l-1;n + k-1}(这里l为S中最小奇圈的长), 给出了kl 时lS(k)n + k-1的一个极图,因此证明了n阶无环的本原反对称带号有向图的S的基指数l(S)2n-1, 给出了达到上界的极图.
    Abstract: Let S be a signed digraph, if the underlying digraph D(S) is symmetric, and each 2-cycle in S is negative, then S is called an anti-symmetric signed digraph. The local bases of primitive anti-symmetric signed digraphs with no loops of order n is studied, and the following conclusion is proved that lS(k)max{n + l-1, n + k-1}, where l is the shortest length of odd cycles of S. The upper bound of the bases of primitive anti-symmetric signed digraphs with no loops of order n are also obtained, and it is shown that the above obtained upper bounds are sharp.
计量
  • 文章访问数:  1445
  • HTML全文浏览量:  79
  • PDF下载量:  559
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-08
  • 修回日期:  2010-04-20
  • 刊出日期:  2011-02-24

目录

    /

    返回文章
    返回