In、Ga掺杂对SnO2的第一性原理研究

姜如青, 欧阳剑, 杨辉, 郑树文, 赵灵智, 宿世臣

姜如青, 欧阳剑, 杨辉, 郑树文, 赵灵智, 宿世臣. In、Ga掺杂对SnO2的第一性原理研究[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 1-6.
引用本文: 姜如青, 欧阳剑, 杨辉, 郑树文, 赵灵智, 宿世臣. In、Ga掺杂对SnO2的第一性原理研究[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 1-6.
First-Principles Investigations of the electronic structures and optical Properties of SnO2 with In and Ga Defects[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(3): 1-6.
Citation: First-Principles Investigations of the electronic structures and optical Properties of SnO2 with In and Ga Defects[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(3): 1-6.

In、Ga掺杂对SnO2的第一性原理研究

基金项目: 

广东省科技计划项目:广东省青少年科技教育基地发展现状研究;广东省科技计划项目:广东省青少年科技教育基地发展现状研究;广东省科技计划项目:广东省青少年科技教育基地发展现状研究;广东省科技计划项目:广东省青少年科技教育基地发展现状研究;广东省科技计划项目:广东省青少年科技教育基地发展现状研究;广东省高等学校科技创新项目

详细信息
    通讯作者:

    宿世臣

  • 中图分类号: O482.7

First-Principles Investigations of the electronic structures and optical Properties of SnO2 with In and Ga Defects

  • 摘要: 基于密度泛函理论的第一性原理平面波超软赝势方法,建立了本征SnO2、SnO2:In、SnO2:Ga和SnO2:(In,Ga) 超晶胞模型并进行了几何结构优化,对其能带结构、 态密度、 电荷密度及光学性质进行了模拟计算. 结果显示,相比于SnO2:In和SnO2:Ga,SnO2:(In, Ga)的晶格常数更接近于本征SnO2,可有效降低SnO2材料掺杂体系的晶格畸变. SnO2中In、Ga的掺入能够增大材料的带隙值,且能带结构向高能方向移动,材料呈现典型的p型半导体特性. SnO2:(In, Ga)中,In与Ga掺杂原子和O原子的电子云呈现出共价键特性. 光学性能表明,SnO2:(In, Ga)晶体中,光子能量在0~2.45eV和大于6.27eV的范围内表现出良好的介电性能,在微型微电子传感器机械系统器件和高密度信息存储等方面具有良好的应用前景. SnO2:(In, Ga)在可见光范围内具有105cm-1数量级的吸收系数,能够强烈地吸收光能,在光电器件的吸收材料中具有潜在的应用前景.
    Abstract: Based on the ultra-soft pseudopotential approach of the plane-wave based upon density functional theory, the supercell of pure SnO2, SnO2:In, SnO2:Ga and SnO2:(In, Ga) model was established, its geometry structure was optimized, and the band structures, density of states, charge density and optical properties were obtained. The results show that the lattice constant of SnO2:(In, Ga) is more close to the pure SnO2, comparing with the SnO2:In and nO2:Ga, which can effectively reduce the lattice distortion of doped SnO2. The bandgap value increase and the band structure move toward the high energy direction for the doped SnO2, presenting p-type features. For the co-doped SnO2:(In,Ga), the electron clouds of the In (Ga) and O atoms have shown the characteristics of covalent bond. For the SnO2:(In, Ga), when the photon energy about 0~2.45eV and greater than 6.27eV, the crystal performance shows pretty dielectric character, which has a good application prospect in tiny microelectronic sensor mechanical system device and high density information storage. SnO2:(In, Ga) will be widely used in the photoelectric device for its strongly absorption capacity of light energy, the absorption coefficient reached to 105 cm-1.
  • [1] Dolbec R,E I Khakani M A,Serventi A M,Trudeau M,Saint Jacques R G. Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition [J].Thin Solid Films,2002,419 (1-2):230-236. DOI:10.1016/S0040-6090(02)00769-1
    [2] Aukkaravittayapun S, Wongtida N, Kasecwatin T, Charojrochkul S, Unnanon K, Chindaudom K. Large scale F-doped SnO2 coating on glass by spray pyrolysis [J]. Thin Solid Films,2006,496(1):117-120. DOI:10.1016/j.tsf.2005.08.259
    [3] BATZILL M, KATSIEV K, DIEBOLD U. Surface morphologies of SnO2 (110) [J].Surface Science,2003, 529:295- 311. DOI:10.1016/S0039-6028(03)00357-1
    [4] BATZILL M, KATSIEV K, JAMES M. Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: Structure, composition,and electronic properties [J]. Physical Review B, 2005,72(16):165414-20. DOI:10.1103/PhysRevB.72.165414
    [5] SAHAR Vahdatifar, ABBAS ALI Khodadadi,YADOLLAH Mortazavi. Effects of nano additives on stability of Pt/SnO2 as a sensing material for detection of CO [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2014,191:421-430. DOI:10.1016/j.snb. 2013.10.010
    [6] SIMON D E, SIMON P B. Energetically accessible reconstructions along interstitial rows on the rutile (110) surface [J]. Physical Chemistry and Chemical Physics,2001,3: 1954- 1957. DOI:10.1039/b101804n
    [7] BUSIAKIEWICZ A, KLUSEK Z,ROGALA M, The new high- temperature surface structure on reduced TiO2(001) [J]. Journal of Physics: Condensd Matter, 2010, 22: 395501-6. DOI:10.1088/0953-8984/22/39/395501
    [8] LIU Huixuan. Double-gate SnO2 nanowire electric-double-layer transistors with tunable threshold voltage [J]. APPLIED PHYSICS LETTERS, 2015, 106: 233114. DOI:10.1063/ 1. 4922453
    [9] MATTI A, JASKARI M, TAPIO T R. Band structure and optical parameters of the SnO2 (110) surface [J]. Physical Review B,2001,64:075407- 075414. DOI:10.1103/Phy\ sRevB. 64.075407
    [10] JI Z, Zhao L, HE Z P , ZHOU Q and CHEN C. Transparent p-type conducting indium-doped SnO2 thin films deposited by spray pyrolysis [J]. Mater.Lett. 2006, 60:1387-1389. DOI:10.10 16/j.matlet.2005.11.057
    [11] Tsay C Y, Liang S C.Fabrication of p-type conductivity in SnO2 thin films through Ga doping [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 622:644-650. DOI:10.1016/j.jallcom.2014.10.003
    [12] MAO Qinan, JI Zhenguo and Lina Zhao. Mobility enhancement of p-type SnO2 by In–Ga co-doping [J]. Phys. Status Solidi, 2010, 2: 299-302. DOI:10.1002/pssb.200945545
    [13] LIU Y M, Zhao L Z, Qin K N, Cui Z Y, Li S J. First-principles study of effects of Al doping on electronic structures and optical properties of SnO2 [J]. Materials Research Innovations, 2014, 18: 522-526. DOI: 10.1179/1432891714Z.000000000487
    [14] Segall M D, Philip J D L, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. Journal of Physics Condensed Matter, 2002, 14(11): 2717-2744. PII: S09 53-8984(02)32831-5
    [15] Thangaraju B. Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor [J]. Thin Solid Films ,2002, 402(1):71-78. DOI: 10.1016/S0040-6090(01)01667-4
    [16] Yu B,Zhu C and Gan.F. Exciton spectra of SnO2 nanocrystals with surficial dipole layer [J]. Opt. Mater, 1997, 7:15-20. PII:S0925-3467(96)00060-2
    [17] 徐 剑, 黄水平, 王占山, 等. F掺杂SnO2电子结构的模拟计算 [J]. 物理学报, 2007, 56(12): 7195-7200. DOI: 1000-3290/2007/56(12)/7195-06
    [18] Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J. Electronic structure and optical properties of ZnO doped with carbon [J]. Acta Phys. Sin. 2008, 57: 6520-6525. DOI: 1000 - 3290/2008/57(10)/6520-06
    [19] Adachi S. Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: key properties for a variety of the 2-4 mum optoelectronic device applications [J]. Journal of Applied Physics. 1987, 61:4869-76. DOI:10.1063/1.338352?

    [1] Dolbec R,E I Khakani M A,Serventi A M,Trudeau M,Saint Jacques R G. Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition [J].Thin Solid Films,2002,419 (1-2):230-236. DOI:10.1016/S0040-6090(02)00769-1
    [2] Aukkaravittayapun S, Wongtida N, Kasecwatin T, Charojrochkul S, Unnanon K, Chindaudom K. Large scale F-doped SnO2 coating on glass by spray pyrolysis [J]. Thin Solid Films,2006,496(1):117-120. DOI:10.1016/j.tsf.2005.08.259
    [3] BATZILL M, KATSIEV K, DIEBOLD U. Surface morphologies of SnO2 (110) [J].Surface Science,2003, 529:295- 311. DOI:10.1016/S0039-6028(03)00357-1
    [4] BATZILL M, KATSIEV K, JAMES M. Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: Structure, composition,and electronic properties [J]. Physical Review B, 2005,72(16):165414-20. DOI:10.1103/PhysRevB.72.165414
    [5] SAHAR Vahdatifar, ABBAS ALI Khodadadi,YADOLLAH Mortazavi. Effects of nano additives on stability of Pt/SnO2 as a sensing material for detection of CO [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2014,191:421-430. DOI:10.1016/j.snb. 2013.10.010
    [6] SIMON D E, SIMON P B. Energetically accessible reconstructions along interstitial rows on the rutile (110) surface [J]. Physical Chemistry and Chemical Physics,2001,3: 1954- 1957. DOI:10.1039/b101804n
    [7] BUSIAKIEWICZ A, KLUSEK Z,ROGALA M, The new high- temperature surface structure on reduced TiO2(001) [J]. Journal of Physics: Condensd Matter, 2010, 22: 395501-6. DOI:10.1088/0953-8984/22/39/395501
    [8] LIU Huixuan. Double-gate SnO2 nanowire electric-double-layer transistors with tunable threshold voltage [J]. APPLIED PHYSICS LETTERS, 2015, 106: 233114. DOI:10.1063/ 1. 4922453
    [9] MATTI A, JASKARI M, TAPIO T R. Band structure and optical parameters of the SnO2 (110) surface [J]. Physical Review B,2001,64:075407- 075414. DOI:10.1103/Phy\ sRevB. 64.075407
    [10] JI Z, Zhao L, HE Z P , ZHOU Q and CHEN C. Transparent p-type conducting indium-doped SnO2 thin films deposited by spray pyrolysis [J]. Mater.Lett. 2006, 60:1387-1389. DOI:10.10 16/j.matlet.2005.11.057
    [11] Tsay C Y, Liang S C.Fabrication of p-type conductivity in SnO2 thin films through Ga doping [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 622:644-650. DOI:10.1016/j.jallcom.2014.10.003
    [12] MAO Qinan, JI Zhenguo and Lina Zhao. Mobility enhancement of p-type SnO2 by In–Ga co-doping [J]. Phys. Status Solidi, 2010, 2: 299-302. DOI:10.1002/pssb.200945545
    [13] LIU Y M, Zhao L Z, Qin K N, Cui Z Y, Li S J. First-principles study of effects of Al doping on electronic structures and optical properties of SnO2 [J]. Materials Research Innovations, 2014, 18: 522-526. DOI: 10.1179/1432891714Z.000000000487
    [14] Segall M D, Philip J D L, et al. First-principles simulation: Ideas, illustrations and the CASTEP code[J]. Journal of Physics Condensed Matter, 2002, 14(11): 2717-2744. PII: S09 53-8984(02)32831-5
    [15] Thangaraju B. Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor [J]. Thin Solid Films ,2002, 402(1):71-78. DOI: 10.1016/S0040-6090(01)01667-4
    [16] Yu B,Zhu C and Gan.F. Exciton spectra of SnO2 nanocrystals with surficial dipole layer [J]. Opt. Mater, 1997, 7:15-20. PII:S0925-3467(96)00060-2
    [17] 徐 剑, 黄水平, 王占山, 等. F掺杂SnO2电子结构的模拟计算 [J]. 物理学报, 2007, 56(12): 7195-7200. DOI: 1000-3290/2007/56(12)/7195-06
    [18] Duan M Y, Xu M, Zhou H P, Chen Q Y, Hu Z G, Dong C J. Electronic structure and optical properties of ZnO doped with carbon [J]. Acta Phys. Sin. 2008, 57: 6520-6525. DOI: 1000 - 3290/2008/57(10)/6520-06
    [19] Adachi S. Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: key properties for a variety of the 2-4 mum optoelectronic device applications [J]. Journal of Applied Physics. 1987, 61:4869-76. DOI:10.1063/1.338352?

计量
  • 文章访问数:  1064
  • HTML全文浏览量:  152
  • PDF下载量:  206
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-31
  • 修回日期:  2016-02-29
  • 刊出日期:  2017-06-24

目录

    /

    返回文章
    返回