Simultaneously hydrogen production organic degradation of MoS2/Ag/TiO2 in two chamber photo reactor
-
摘要: 以玻璃纤维膜为基底制备了具有三元结构的新型MoS2/Ag/TiO2光催化膜. 该复合催化剂膜具有多层结构,能够在模拟太阳光和紫外光下进行产氢反应. 该光催化膜可以用于新型的双室光催化反应器中进行同步产氢与有机物降解. 在光催化过程中,氢气在反应器的阴极室产生,而有机物在阳极室进行降解. 当Ag负载量为1wt%, TiO2负载量为160wt%时,MoS2/Ag/TiO2复合催化膜的比产氢速率达到了最大值,在模拟太阳光下为产氢速率为85 mmol·h-1·m-2(产二氧化碳速率为88 mmol·h-1·m-2),能量转化较率最高可达0.85%,是纯TiO2 的2.3倍;在紫外光下产氢速率为68 mmol·h-1·m-2,是纯TiO2的1.2倍. 在光照下TiO2 和 MoS2同时受光的激发产生光生电子与空穴,由于Ag功函数比TiO2 的功函数低,电子从TiO2导带上转移至Ag再转移到MoS2价带上形成TiO2→Ag→MoS2 的电子传递模式.因此,能更有效的实现电子与空穴的分离,提高产氢的效率.
-
关键词:
- 有机物降解
Abstract: A novel and environmentally friendly photocatalyst film, MoS2/Ag/TiO2, was synthesised on a glass-fibre membrane. The composite catalyst film had a multi-layer structure and responded well to solar light. The catalyst performed well for both photocatalytic hydrogen production and organic degradation in a two-chamber photo-reactor under either solar or UV light irradiation. Hydrogen was produced in the cathode side chamber while the model organic was decomposed in the anode side chamber. The specific hydrogen production rate went through a maximum of 85 mmol·h-1·m-2 with an energy conversion efficiency of 0.85% and a quantum yield of 12% under solar light, while a maximum of 68 mmol·h-1·m-2. It is apparent that Ag functioned as a nanojunction between the TiO2 and MoS2 layers, which allowed the transfer of photo-excited electrons via TiO2→Ag→MoS2 for organic degradation and H+ reduction (hydrogen evolution) in two different chambers.-
Keywords:
- organic degradation
-
-
[1] Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, et al. Photocatalyst releasing hydrogen from water - enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. [J]. Nature 2006;440:295
[2] Nada AA, Hamed HA, Barakat MH, Mohamed NR, Veziroglu TN. Enhancement of photocatalytic hydrogen production rate using photosensitized TiO2/RuO2-MV2+ [J]. Int J Hydrogen Energy 2008;33:3264-9
[3] Cui WQ, Feng LR, Xu CH, Lu SJ, Qiu F. Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film [J]. Catal Commun 2004;5:533-6
[4] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J]. J Catal 2003;216:505-16
[5] Costa D, Arrouvel C, Breysse M, Toulhoat H, Raybaud P. Edge wetting effects of gamma-Al2O3 and anatase-TiO2 supports by MoS2 and CoMoS active phases: A DFT study [J]. J Catal 2007;246:325-43
[6] Kanda S, Akita T, Fujishima M, Tada H. Facile synthesis and catalytic activity of MoS2/TiO2 by a photodeposition-based technique and its oxidized derivative MoO3/TiO2 with a unique photochromism [J]. Journal of Colloid and Interface Science 2011;354:607-10
[7] Hu KH, Hu XG, Xu YF, Sun JD. Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange [J]. J Mater Sci 2010;45:2640-8
[8] Ho WK, Yu JC, Lin J, Yu JG, Li PS. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2 [J]. Langmuir 2004;20:5865-9
[9] Pourabbas B, Jamshidi B. Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photo-oxidation of phenol [J]. Chem Eng J 2008;138:55-62
[10] Tsuji I, Kato H, Kobayashi H, Kudo A. Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)(x)Zn2(1-x)S2 solid solutions [J]. J Phys Chem B 2005;109:7323-9
[11] Zhang K, Jing DW, Xing CJ, Guo LJ. Significantly improved photocatalytic hydrogen production activity over Cd1-xZnxS photocatalysts prepared by a novel thermal sulfuration method [J]. Int J Hydrogen Energy 2007;32:4685-91
[12] Zong X, Yan HJ, Wu GP, Ma GJ, Wen FY, Wang L, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation [J]. J Am Chem Soc 2008;130:7176-7
[13] Zhang YJ, Zhang L. Preparation of Ru-loaded CdS/Al-HMS nanocomposites and production of hydrogen by photocatalytic degradation of formic acid [J]. Appl Surf Sci 2009;255:4863-6.DOI:10.1016/j.apsusc.2008.12.019
[14] Fujihara B, Ohno T, Matsumura M. Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles [J]. J Chem Soc Faraday T 1998;94:3705-9
[15] Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system [J]. Nat Mater 2006;5:782-6.DOI:10.1038/nmat1734
[16] Zhu H, Yang B, Xu J, Fu Z, Wen M, Guo T, et al. Construction of Z-scheme type CdS-Au-TiO2 hollow nanorod arrays with enhanced photocatalytic activity [J]. Appl Catal B: Env 2009;90:463-9.DOI:DOI: 10.1016/j.apcatb.2009.04.006
[17] Shen S, Guo L, Chen X, Ren F, Kronawitter CX, Mao SS. Effect of noble metal in CdS/M/TiO2 for photocatalytic degradation of methylene blue under visible light [J]. Int J Green Nanotechnol 2009;1:94-104
[18] Tian YM, Zhao JZ, Fu WY, Liu YH, Zhu YZ, Wang ZC. A facile route to synthesis Of MoS2 nanorods [J]. Mater Lett 2005;59:3452-5
[19] Sasaki Y, Nemoto H, Saito K, Kudo A. Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator [J]. J Phys Chem C 2009;113:17536-42.DOI:10.1021/jp907128k
[20] Hou Y, Wen Z, Cui S, Guo X, Chen J. Constructing 2D Porous Graphitic C3N4 Nanosheets/Nitrogen-Doped Graphene/Layered MoS2 Ternary Nanojunction with Enhanced Photoelectrochemical Activity [J]. Adv Mater 2013;25:6291-7.DOI:10.1002/adma.201303116
[21] Hou Y, Laursen AB, Zhang J, Zhang G, Zhu Y, Wang X, et al. Layered nanojunctions for hydrogen-evolution catalysis [J]. Angewandte Chemie 2013;52:3621-5.DOI:10.1002/anie.201210294
[22] Best JP, Dunstan DE. Nanotechnology for photolytic hydrogen production: colloidal anodic oxidation [J]. Int J Hydrogen Energy 2009;34:7562-78.DOI:DOI: 10.1016/j.ijhydene.2009.07.051
[23] Cao YW, Banin U. Growth and properties of semiconductor core/shell nanocrystals with InAs cores [J]. J Am Chem Soc 2000;122:9692-702.DOI:10.1021/ja001386g[1] Maeda K, Teramura K, Lu DL, Takata T, Saito N, Inoue Y, et al. Photocatalyst releasing hydrogen from water - enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. [J]. Nature 2006;440:295
[2] Nada AA, Hamed HA, Barakat MH, Mohamed NR, Veziroglu TN. Enhancement of photocatalytic hydrogen production rate using photosensitized TiO2/RuO2-MV2+ [J]. Int J Hydrogen Energy 2008;33:3264-9
[3] Cui WQ, Feng LR, Xu CH, Lu SJ, Qiu F. Hydrogen production by photocatalytic decomposition of methanol gas on Pt/TiO2 nano-film [J]. Catal Commun 2004;5:533-6
[4] Anpo M, Takeuchi M. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation [J]. J Catal 2003;216:505-16
[5] Costa D, Arrouvel C, Breysse M, Toulhoat H, Raybaud P. Edge wetting effects of gamma-Al2O3 and anatase-TiO2 supports by MoS2 and CoMoS active phases: A DFT study [J]. J Catal 2007;246:325-43
[6] Kanda S, Akita T, Fujishima M, Tada H. Facile synthesis and catalytic activity of MoS2/TiO2 by a photodeposition-based technique and its oxidized derivative MoO3/TiO2 with a unique photochromism [J]. Journal of Colloid and Interface Science 2011;354:607-10
[7] Hu KH, Hu XG, Xu YF, Sun JD. Synthesis of nano-MoS2/TiO2 composite and its catalytic degradation effect on methyl orange [J]. J Mater Sci 2010;45:2640-8
[8] Ho WK, Yu JC, Lin J, Yu JG, Li PS. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2 [J]. Langmuir 2004;20:5865-9
[9] Pourabbas B, Jamshidi B. Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photo-oxidation of phenol [J]. Chem Eng J 2008;138:55-62
[10] Tsuji I, Kato H, Kobayashi H, Kudo A. Photocatalytic H2 evolution under visible-light irradiation over band-structure-controlled (CuIn)(x)Zn2(1-x)S2 solid solutions [J]. J Phys Chem B 2005;109:7323-9
[11] Zhang K, Jing DW, Xing CJ, Guo LJ. Significantly improved photocatalytic hydrogen production activity over Cd1-xZnxS photocatalysts prepared by a novel thermal sulfuration method [J]. Int J Hydrogen Energy 2007;32:4685-91
[12] Zong X, Yan HJ, Wu GP, Ma GJ, Wen FY, Wang L, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as cocatalyst under visible light irradiation [J]. J Am Chem Soc 2008;130:7176-7
[13] Zhang YJ, Zhang L. Preparation of Ru-loaded CdS/Al-HMS nanocomposites and production of hydrogen by photocatalytic degradation of formic acid [J]. Appl Surf Sci 2009;255:4863-6.DOI:10.1016/j.apsusc.2008.12.019
[14] Fujihara B, Ohno T, Matsumura M. Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles [J]. J Chem Soc Faraday T 1998;94:3705-9
[15] Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system [J]. Nat Mater 2006;5:782-6.DOI:10.1038/nmat1734
[16] Zhu H, Yang B, Xu J, Fu Z, Wen M, Guo T, et al. Construction of Z-scheme type CdS-Au-TiO2 hollow nanorod arrays with enhanced photocatalytic activity [J]. Appl Catal B: Env 2009;90:463-9.DOI:DOI: 10.1016/j.apcatb.2009.04.006
[17] Shen S, Guo L, Chen X, Ren F, Kronawitter CX, Mao SS. Effect of noble metal in CdS/M/TiO2 for photocatalytic degradation of methylene blue under visible light [J]. Int J Green Nanotechnol 2009;1:94-104
[18] Tian YM, Zhao JZ, Fu WY, Liu YH, Zhu YZ, Wang ZC. A facile route to synthesis Of MoS2 nanorods [J]. Mater Lett 2005;59:3452-5
[19] Sasaki Y, Nemoto H, Saito K, Kudo A. Solar Water Splitting Using Powdered Photocatalysts Driven by Z-Schematic Interparticle Electron Transfer without an Electron Mediator [J]. J Phys Chem C 2009;113:17536-42.DOI:10.1021/jp907128k
[20] Hou Y, Wen Z, Cui S, Guo X, Chen J. Constructing 2D Porous Graphitic C3N4 Nanosheets/Nitrogen-Doped Graphene/Layered MoS2 Ternary Nanojunction with Enhanced Photoelectrochemical Activity [J]. Adv Mater 2013;25:6291-7.DOI:10.1002/adma.201303116
[21] Hou Y, Laursen AB, Zhang J, Zhang G, Zhu Y, Wang X, et al. Layered nanojunctions for hydrogen-evolution catalysis [J]. Angewandte Chemie 2013;52:3621-5.DOI:10.1002/anie.201210294
[22] Best JP, Dunstan DE. Nanotechnology for photolytic hydrogen production: colloidal anodic oxidation [J]. Int J Hydrogen Energy 2009;34:7562-78.DOI:DOI: 10.1016/j.ijhydene.2009.07.051
[23] Cao YW, Banin U. Growth and properties of semiconductor core/shell nanocrystals with InAs cores [J]. J Am Chem Soc 2000;122:9692-702.DOI:10.1021/ja001386g
计量
- 文章访问数: 1226
- HTML全文浏览量: 133
- PDF下载量: 220