植物激素调控籽粒大小的研究进展

董庆坤, 刘慧丽, 陶利珍

董庆坤, 刘慧丽, 陶利珍. 植物激素调控籽粒大小的研究进展[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 72-78.
引用本文: 董庆坤, 刘慧丽, 陶利珍. 植物激素调控籽粒大小的研究进展[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 72-78.
Progress on the plant hormone regulation Related to rice Seed Development[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(6): 72-78.
Citation: Progress on the plant hormone regulation Related to rice Seed Development[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(6): 72-78.

植物激素调控籽粒大小的研究进展

基金项目: 

国家自然科学基金项目

详细信息
    通讯作者:

    刘慧丽

Progress on the plant hormone regulation Related to rice Seed Development

  • 摘要: 植物的种子属于繁殖器官,是双受精之后形成的。种子的大小和品质是影响农作物产量的主要因素之一,研究控制种子籽粒大小发育的相关因素,对于提高农作物产量具有重要意义。高等植物的种子通常包含三个部分:胚胎、胚乳和种皮,这三个部分共同协调发育,最终决定种子的大小。近几年通过种子发育缺陷突变体或QTL等分子遗传学的研究方法,挖掘到许多控制种子发育的重要基因,这些基因广泛参与胚、胚乳、种皮等的发育过程,最终影响种子的大小和产量。通过对模式植物拟南芥和水稻等研究,发现调控种子发育的功能基因,它们许多是通过整合到植物激素的代谢或信号转导途径起作用,说明植物激素在调控籽粒发育中发挥重要作用,但有关这些基因作用的分子机理及其遗传调控网络有待深入阐明。本文主要以模式植物种子的发育研究为例,着重介绍植物激素调控种子籽粒大小调控的研究进展。
    Abstract: The seed is produced after double fertilization as a reproductive organ of higher plants. The size and quality of the seed serve as two main components that influence crop yield. In flowering plants, the seed comprises three major anatomical components, the embryo, the endosperm and the seed coat. Seed size is coordinately determined by the growth of the embryo, endosperm and maternal tissue. Exploring relevant factors that control seed development is crucial for improving crop yield. Recently, some mutants with seed developmental defects and QTL functions have been dissected by genetic and molecular biology methods. Related genes were found to regulate the development of embryo, endosperm and integument thus determining seed final size and yield. Most of these work were carried out in Arabidopsis and rice. Some reported work showed these genes function by integrating to the hormone metabolism or signaling pathway indicating plant hormone play key role during seed development, but the underlying molecular mechanism and gene regulatory network is still unknown. This article mainly focuses on the model plants of rice and Arabidopsis, reviewing recent progress in hormone-dependent regulation of seed development.
  • [1] Kesavan M, Song J T, Seo H S.Seed size: a priority trait in cereal crops[J].Physiol Plant, 2013, 147(2):113-120 [2] Le BH, Wagmaister J A, Kawashima T, et al.Using genomics to study legume seed development[J].Plant Physiol, 2007, 144(2):562-574 [3] Ohad N, Yadegari R, Margossian L, et al.Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization[J].Plant Cell, 1999, 11(3):407-416 [4] Sun X, Shantharaj D, Kang X, et al.Transcriptional and hormonal signaling control of Arabidopsis seed development[J].Curr Opin Plant Biol, 2010, 13(5):611-620 [5] Sundaresan V.Control of seed size in plants[J].Proc Natl Acad Sci U S A, 2005, 102(50):17887-17888 [6] Zhou S R, Yin L L, Xue H W.Functional genomics based understanding of rice endosperm development[J].Curr Opin Plant Biol, 2013, 16(2):236-246 [7] Wang A, Garcia D, Zhang H, et al.The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis[J].Plant J, 2010, 63(4):670-679 [8] Luo M, Dennis E S, Berger F, et al.MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis[J].Proc Natl Acad Sci U S A, 2005, 102(48):17531-17536 [9] Fang W, Wang Z, Cui R, et al.Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana[J].Plant J, 2012, 70(6):929-939 [10] Ohto M A, Floyd S K, Fischer R L, et al.Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis[J].Sex Plant Reprod, 2009, 22(4):277-289 [11] Garcia D, Fitz G J, Berger F.Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis[J].Plant Cell, 2005, 17(1):52-60 [12] Jofuku K D, Omidyar P K, Gee Z, et al.Control of seed mass and seed yield by the floral homeotic gene APETALA2[J].Proc Natl Acad Sci U S A, 2005, 102(8):3117-3122 [13] Ohto M A, Fischer R L, Goldberg R B, et al.Control of seed mass by APETALA2[J].Proc Natl Acad Sci U S A, 2005, 102(8):3123-3128 [14] Song X J, Huang W, Shi M, et al.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J].Nat Genet, 2007, 39(5):623-630 [15] Xia T, Li N, Dumenil J, et al.The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis[J].Plant Cell, 2013, 25(9):3347-3359 [16] Li Y, Zheng L, Corke F, et al.Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana[J].Genes Dev, 2008, 22(10):1331-1336 [17] Huang R, Jiang L, Zheng J, et al.Genetic bases of rice grain shape: so many genes, so little known[J].Trends Plant Sci, 2013, 18(4):218-226 [18] Kesavan M, Song J T, Seo H S.Seed size: a priority trait in cereal crops[J].Physiol Plant, 2013, 147(2):113-120 [19] Hwang I, Sheen J.Two-component circuitry in Arabidopsis cytokinin signal transduction[J].Nature, 2001, 413(6854):383-389 [20] Cheng C Y, Kieber J J.The role of cytokinin in ovule development in Arabidopsis[J]. . , : .[J].Plant Signal Behav, 2013, 8(3):e23393-e23393 [21] Riefler M, Novak O, Strnad M, et al.Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism[J].. , (1): 40-54.[J].Plant Cell, 2006, 18(1):40-54 [22] Werner T, Motyka V, Laucou V, et al.Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity[J].Plant Cell, 2003, 15(11):2532-2550 [23] Hutchison C E, Li J, Argueso C, et al.The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling[J].Plant Cell, 2006, 18(11):3073-3087 [24] Argyros R D, Mathews D E, Chiang Y H, et al.Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development[J].Plant C, 2008, 20(8):2102-2116 [25] Li J, Nie X, Tan J L, et al.Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis[J].Proc Natl Acad Sci U S A, 2013, 110(38):15479-15484 [26] Yang J, Zhang J, Wang Z, et al.Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice[J].Plant Growth Regulation, 2003, 41(3):185-195 [27] Ashikari M, Sakakibara H, Lin S, et al.Cytokinin oxidase regulates rice grain production[J].Science, 2005, 309(5735):741-745 [28] Xing Y, Zhang Q.Genetic and molecular bases of rice yield[J].Annu Rev Plant Biol, 2010, 61( ):421-442 [29] Kurakawa T, Ueda N, Maekawa M, et al.Direct control of shoot meristem activity by a cytokinin-activating enzyme[J].Nature, 2007, 445(7128):652-655 [30] Li S, Zhao B, Yuan D, et al.Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression[J].Proc Natl Acad Sci U S A, 2013, 110(8):3167-3172 [31] Li M, Tang D, Wang K, et al.Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice[J].Plant Biotechnol J, 2011, 9(9):1002-1013 [32] Li N, Li Y.Ubiquitin-mediated control of seed size in plants[J].Front Plant Sci, 2014, 5:332-332 [33] Nayar S, Sharma R, Tyagi A K, et al.Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis[J].J Exp Bot, 2013, 64(14):4239-4253 [34] Yin L L, Xue H W.The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development[J].Plant Cell, 2012, 24(3):1049-1065 [35] Hudson D, Guevara D R, Hand A J, et al.Rice cytokinin GATA transcription Factor1 regulates chloroplast development and plant architecture[J].Plant Physiol, 2013, 162(1):132-144 [36] Zhang H, Tan G, Yang L, et al.Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice[J].Plant Physiol Biochem, 2009, 47(3):195-204 [37] Uchiumi T, Okamoto T.Rice fruit development is associated with an increased IAA content in pollinated ovaries[J]. . , :-.[J].Planta, 2010, 232(3): 579-592 [38] Schruff M C, Spielman M, Tiwari S, et al.The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs[J].Development, 2006, 133(2):251-261 [39] Jiang W B, Huang H Y, Hu Y W, et al.Brassinosteroid regulates seed size and shape in Arabidopsis[J].Plant Physiol, 2013, 162(4):1965-1977 [40] Fujioka S, Li J, Choi Y H, et al.The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis[J].Plant Cell, 1997, 9(11):1951-1962 [41] Yuan T, Fujioka S, Takatsuto S, et al.BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana[J].Plant J, 2007, 51(2):220-233 [42] Oki K, Inaba N, Kitagawa K, et al.Function of the alpha subunit of rice heterotrimeric G protein in brassinosteroid signaling[J].Plant Cell Physiol, 2009, 50(1):161-172 [43] Morinaka Y, Sakamoto T, Inukai Y, et al.Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice[J].Plant Physiol, 2006, 141(3):924-931 [44] Hong Z, Ueguchi-Tanaka M, Fujioka S, et al.The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone[J].Plant Cell, 2005, 17(8):2243-2254 [45] Tanabe S, Ashikari M, Fujioka S, et al.A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length[J].Plant Cell, 2005, 17(3):776-790 [46] Hong Z, Ueguchi-Tanaka M, Umemura K, et al.A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450[J].Plant Cell, 2003, 15(12):2900-2910 [47] Wu C Y, Trieu A, Radhakrishnan P, et al.Brassinosteroids regulate grain filling in rice[J].Plant Cell, 2008, 20(8):2130-2145 [48] Tanaka A, Nakagawa H, Tomita C, et al.BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice[J].Plant Physiol, 2009, 151(2):669-680 [49] Vriet C, Russinova E, Reuzeau C.Boosting crop yields with plant steroids[J].Plant Cell, 2012, 24(3):842-857 [50] Cheng Z J, Zhao X Y, Shao X X, et al.Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1[J].Plant Cell, 2014, 26(3):1053-1068 [51] Xue L J, Zhang J J, Xue H W.Genome-wide analysis of the complex transcriptional networks of rice developing seeds[J].PLoS One, 2012, 7(2):e31081-e31081 [52] Temple B R, Jones A M.The plant heterotrimeric G-protein complex[J].Annu Rev Plant Biol, 2007, 58:249-266

    [1] Kesavan M, Song J T, Seo H S.Seed size: a priority trait in cereal crops[J].Physiol Plant, 2013, 147(2):113-120 [2] Le BH, Wagmaister J A, Kawashima T, et al.Using genomics to study legume seed development[J].Plant Physiol, 2007, 144(2):562-574 [3] Ohad N, Yadegari R, Margossian L, et al.Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization[J].Plant Cell, 1999, 11(3):407-416 [4] Sun X, Shantharaj D, Kang X, et al.Transcriptional and hormonal signaling control of Arabidopsis seed development[J].Curr Opin Plant Biol, 2010, 13(5):611-620 [5] Sundaresan V.Control of seed size in plants[J].Proc Natl Acad Sci U S A, 2005, 102(50):17887-17888 [6] Zhou S R, Yin L L, Xue H W.Functional genomics based understanding of rice endosperm development[J].Curr Opin Plant Biol, 2013, 16(2):236-246 [7] Wang A, Garcia D, Zhang H, et al.The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis[J].Plant J, 2010, 63(4):670-679 [8] Luo M, Dennis E S, Berger F, et al.MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis[J].Proc Natl Acad Sci U S A, 2005, 102(48):17531-17536 [9] Fang W, Wang Z, Cui R, et al.Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana[J].Plant J, 2012, 70(6):929-939 [10] Ohto M A, Floyd S K, Fischer R L, et al.Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis[J].Sex Plant Reprod, 2009, 22(4):277-289 [11] Garcia D, Fitz G J, Berger F.Maternal control of integument cell elongation and zygotic control of endosperm growth are coordinated to determine seed size in Arabidopsis[J].Plant Cell, 2005, 17(1):52-60 [12] Jofuku K D, Omidyar P K, Gee Z, et al.Control of seed mass and seed yield by the floral homeotic gene APETALA2[J].Proc Natl Acad Sci U S A, 2005, 102(8):3117-3122 [13] Ohto M A, Fischer R L, Goldberg R B, et al.Control of seed mass by APETALA2[J].Proc Natl Acad Sci U S A, 2005, 102(8):3123-3128 [14] Song X J, Huang W, Shi M, et al.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J].Nat Genet, 2007, 39(5):623-630 [15] Xia T, Li N, Dumenil J, et al.The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis[J].Plant Cell, 2013, 25(9):3347-3359 [16] Li Y, Zheng L, Corke F, et al.Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana[J].Genes Dev, 2008, 22(10):1331-1336 [17] Huang R, Jiang L, Zheng J, et al.Genetic bases of rice grain shape: so many genes, so little known[J].Trends Plant Sci, 2013, 18(4):218-226 [18] Kesavan M, Song J T, Seo H S.Seed size: a priority trait in cereal crops[J].Physiol Plant, 2013, 147(2):113-120 [19] Hwang I, Sheen J.Two-component circuitry in Arabidopsis cytokinin signal transduction[J].Nature, 2001, 413(6854):383-389 [20] Cheng C Y, Kieber J J.The role of cytokinin in ovule development in Arabidopsis[J]. . , : .[J].Plant Signal Behav, 2013, 8(3):e23393-e23393 [21] Riefler M, Novak O, Strnad M, et al.Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism[J].. , (1): 40-54.[J].Plant Cell, 2006, 18(1):40-54 [22] Werner T, Motyka V, Laucou V, et al.Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity[J].Plant Cell, 2003, 15(11):2532-2550 [23] Hutchison C E, Li J, Argueso C, et al.The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling[J].Plant Cell, 2006, 18(11):3073-3087 [24] Argyros R D, Mathews D E, Chiang Y H, et al.Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development[J].Plant C, 2008, 20(8):2102-2116 [25] Li J, Nie X, Tan J L, et al.Integration of epigenetic and genetic controls of seed size by cytokinin in Arabidopsis[J].Proc Natl Acad Sci U S A, 2013, 110(38):15479-15484 [26] Yang J, Zhang J, Wang Z, et al.Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice[J].Plant Growth Regulation, 2003, 41(3):185-195 [27] Ashikari M, Sakakibara H, Lin S, et al.Cytokinin oxidase regulates rice grain production[J].Science, 2005, 309(5735):741-745 [28] Xing Y, Zhang Q.Genetic and molecular bases of rice yield[J].Annu Rev Plant Biol, 2010, 61( ):421-442 [29] Kurakawa T, Ueda N, Maekawa M, et al.Direct control of shoot meristem activity by a cytokinin-activating enzyme[J].Nature, 2007, 445(7128):652-655 [30] Li S, Zhao B, Yuan D, et al.Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression[J].Proc Natl Acad Sci U S A, 2013, 110(8):3167-3172 [31] Li M, Tang D, Wang K, et al.Mutations in the F-box gene LARGER PANICLE improve the panicle architecture and enhance the grain yield in rice[J].Plant Biotechnol J, 2011, 9(9):1002-1013 [32] Li N, Li Y.Ubiquitin-mediated control of seed size in plants[J].Front Plant Sci, 2014, 5:332-332 [33] Nayar S, Sharma R, Tyagi A K, et al.Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis[J].J Exp Bot, 2013, 64(14):4239-4253 [34] Yin L L, Xue H W.The MADS29 transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development[J].Plant Cell, 2012, 24(3):1049-1065 [35] Hudson D, Guevara D R, Hand A J, et al.Rice cytokinin GATA transcription Factor1 regulates chloroplast development and plant architecture[J].Plant Physiol, 2013, 162(1):132-144 [36] Zhang H, Tan G, Yang L, et al.Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice[J].Plant Physiol Biochem, 2009, 47(3):195-204 [37] Uchiumi T, Okamoto T.Rice fruit development is associated with an increased IAA content in pollinated ovaries[J]. . , :-.[J].Planta, 2010, 232(3): 579-592 [38] Schruff M C, Spielman M, Tiwari S, et al.The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs[J].Development, 2006, 133(2):251-261 [39] Jiang W B, Huang H Y, Hu Y W, et al.Brassinosteroid regulates seed size and shape in Arabidopsis[J].Plant Physiol, 2013, 162(4):1965-1977 [40] Fujioka S, Li J, Choi Y H, et al.The Arabidopsis deetiolated2 mutant is blocked early in brassinosteroid biosynthesis[J].Plant Cell, 1997, 9(11):1951-1962 [41] Yuan T, Fujioka S, Takatsuto S, et al.BEN1, a gene encoding a dihydroflavonol 4-reductase (DFR)-like protein, regulates the levels of brassinosteroids in Arabidopsis thaliana[J].Plant J, 2007, 51(2):220-233 [42] Oki K, Inaba N, Kitagawa K, et al.Function of the alpha subunit of rice heterotrimeric G protein in brassinosteroid signaling[J].Plant Cell Physiol, 2009, 50(1):161-172 [43] Morinaka Y, Sakamoto T, Inukai Y, et al.Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice[J].Plant Physiol, 2006, 141(3):924-931 [44] Hong Z, Ueguchi-Tanaka M, Fujioka S, et al.The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone[J].Plant Cell, 2005, 17(8):2243-2254 [45] Tanabe S, Ashikari M, Fujioka S, et al.A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length[J].Plant Cell, 2005, 17(3):776-790 [46] Hong Z, Ueguchi-Tanaka M, Umemura K, et al.A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450[J].Plant Cell, 2003, 15(12):2900-2910 [47] Wu C Y, Trieu A, Radhakrishnan P, et al.Brassinosteroids regulate grain filling in rice[J].Plant Cell, 2008, 20(8):2130-2145 [48] Tanaka A, Nakagawa H, Tomita C, et al.BRASSINOSTEROID UPREGULATED1, encoding a helix-loop-helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice[J].Plant Physiol, 2009, 151(2):669-680 [49] Vriet C, Russinova E, Reuzeau C.Boosting crop yields with plant steroids[J].Plant Cell, 2012, 24(3):842-857 [50] Cheng Z J, Zhao X Y, Shao X X, et al.Abscisic acid regulates early seed development in Arabidopsis by ABI5-mediated transcription of SHORT HYPOCOTYL UNDER BLUE1[J].Plant Cell, 2014, 26(3):1053-1068 [51] Xue L J, Zhang J J, Xue H W.Genome-wide analysis of the complex transcriptional networks of rice developing seeds[J].PLoS One, 2012, 7(2):e31081-e31081 [52] Temple B R, Jones A M.The plant heterotrimeric G-protein complex[J].Annu Rev Plant Biol, 2007, 58:249-266

计量
  • 文章访问数:  1022
  • HTML全文浏览量:  121
  • PDF下载量:  384
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-25
  • 修回日期:  2015-07-02
  • 刊出日期:  2015-11-24

目录

    /

    返回文章
    返回