一种基于加权海明距离的自适应遗传算法

徐承爱, 林伟, 肖红

徐承爱, 林伟, 肖红. 一种基于加权海明距离的自适应遗传算法[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 121-127.
引用本文: 徐承爱, 林伟, 肖红. 一种基于加权海明距离的自适应遗传算法[J]. 华南师范大学学报(自然科学版), 2015, 47(6): 121-127.
An Adaptive Genetic Algorithm Based on Weighted Hamming Distance[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(6): 121-127.
Citation: An Adaptive Genetic Algorithm Based on Weighted Hamming Distance[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(6): 121-127.

一种基于加权海明距离的自适应遗传算法

基金项目: 

广州市科技计划基金项目

详细信息
    通讯作者:

    徐承爱

  • 中图分类号: TP18

An Adaptive Genetic Algorithm Based on Weighted Hamming Distance

  • 摘要: 针对普通遗传算法易出现早熟收敛和搜索效率低的缺陷,提出一种基于加权海明距离的自适应遗传算法。该算法综合考虑个体间加权海明距离和适应度值,自适应调整交叉概率和变异概率;采用精英保留法,保证最优个体不被破坏;使用双重停机准则,减少不必要的计算时间,提高遗传搜索效率。最后,运用经典测试函数对该算法进行了仿真实验。结果表明,该算法可以显著提高遗传优化的全局搜索能力,加快遗传算法的收敛速度。
    Abstract: Aiming at the defect of premature convergence and low-search efficiency of the standard genetic algorithm(SGA), an adaptive genetic algorithm based on weighted hamming distance is presented in this study. The proposed algorithm considers the Weighted hamming distance and the fitness value, adjusting crossover probability and mutation probability adaptively;Using the method of elite preserving to ensure the best individual is not damaged;Using the criterion of dual stopping to reduce unnecessary computing time and improve the efficiency of genetic search. Finally, some simulation experiments are carried out with classical test functions in the Matlab platform. Experimental results show that the proposed algorithm can effectively improve the global search ability of genetic optimization, and speed up the convergence of genetic algorithm.
  • [1] 王小平,曹立明. 遗传算法-理论、应用与软件实现[M]. 西安:西安交通大学出版社,2002.
    [2] Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. IEEE Trans. On Syst., Man and Cybern., 1994, 24(4): 656-667.
    [3] 任子武,伞冶. 自适应遗传算法的改进及在系统辨识中应用研究[J]. 系统仿真学报,2006,18(1):41-43.
    REN Zi-wu,SAN Ye. Improved Adaptive Genetic Algorithm and its Application Research in Parameter Identification[J]. Journal of Sys- tem Simulation,2006,18(1):41-43.
    [4] 王杰,马雁,王非. 一种双变异率的改进遗传算法及其仿真研究[J]. 计算机工程与应用,2008,44(3):57-59.
    WANG Jie,MA Yan,WANG Fei. Study of improved genetic algorithm based on dual muta- tion and its simulation[J].Computer Engineering and Applications,2008,44(3):57-59.
    [5] 田丰,姚爱民,孙小平,王传云,范立磊. 基于个体相似度的双种群遗传算法[J]. 计算机工程与应用,2011,32(5):1789-1791.
    TIAN Feng, YAO Ai-min, SUN Xiao-ping, WANG Chuan-yun, FAN Li-lei. Dual population genetic algorithm based on individual similarity[J]. Computer Engineering and Applications,2011,32(5):1789-1791.
    [6] 田小梅,郑金华,李合军. 基于父个体相似度的自适应遗传算法[J]. 计算机工程与应用,2005,4(18):61-63.
    Tian Xiaomei,Zheng Jinhua,Li Hejun.Adaptive Genetic Algorithm Based on Parents’Similarity[J]. Computer Engineering and Applications,2005,4(18):61-63.
    [7] 李军华,黎明,袁丽华. 基于个体相似度交叉率自适应的遗传算法[J]. 系统工程,2006,24(9):108-111.
    [8] 巩固,郝国生,王文虎. 基于海明距离改进的自适应遗传算法[J]. 江苏师范大学学报(自然科学版),2014,32(4):51-54.
    Gong Gu,Hao Guosheng,Wang Wenhu. Improved adaptive genetic algorithm based on Hamming distance[J]. Journal of Jiangsu Normal University(Natural Science Edition),2014,32(4):51-54.
    [9] 张琛,詹志辉. 遗传算法选择策略比较[J]. 计算机工程与设计,2009,30(23):5471-5474.
    ZHANG Chen, ZHAN Zhi-hui. Comparisons of selection strategy in genetic algorithm[J].Computer Engineering and Design,2009,30(23):5471-5474.
    [10] 金晶,苏勇. 一种改进的自适应遗传算法[J]. 计算机工程与应用,2005,41(18):64-69.
    Jin Jing,Su Yong. An Improved Adaptive Genetic Algorithm[J]. Computer Engineering and Applications,2005,41(18):64-69.
    [11] 梁兴建,詹志辉,谭 伟,彭建新. 基于最优保留策略的改进遗传算法[J]. 计算机工程与设计,2014,35(11):3985-3990.
    LIANG Xing-jian,ZHAN Zhi-hui,TAN Wei,PENG Jian-xin.Improved genetic algorithm based on elitist reserved strategy[J]. COMPUTER ENGINEERING AND DESIGN,2014,35(11):3985-3990.
    [12] S. L. Ho, Guizhi Xu, W. N. Fu. Optimization of Array Magnetic Coil Design for Functional MagneticStimulation Based on Improved Genetic Algorithm[J]. IEEE TRANSACTIONS ON MAGNETICS, 2009, 45(10) :4849-4852
    [13] De Jong K A. An analysis of the behavior of a class of generic adaptive systems[D]. University o f Michigan, 1975.

    [1] 王小平,曹立明. 遗传算法-理论、应用与软件实现[M]. 西安:西安交通大学出版社,2002.
    [2] Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J]. IEEE Trans. On Syst., Man and Cybern., 1994, 24(4): 656-667.
    [3] 任子武,伞冶. 自适应遗传算法的改进及在系统辨识中应用研究[J]. 系统仿真学报,2006,18(1):41-43.
    REN Zi-wu,SAN Ye. Improved Adaptive Genetic Algorithm and its Application Research in Parameter Identification[J]. Journal of Sys- tem Simulation,2006,18(1):41-43.
    [4] 王杰,马雁,王非. 一种双变异率的改进遗传算法及其仿真研究[J]. 计算机工程与应用,2008,44(3):57-59.
    WANG Jie,MA Yan,WANG Fei. Study of improved genetic algorithm based on dual muta- tion and its simulation[J].Computer Engineering and Applications,2008,44(3):57-59.
    [5] 田丰,姚爱民,孙小平,王传云,范立磊. 基于个体相似度的双种群遗传算法[J]. 计算机工程与应用,2011,32(5):1789-1791.
    TIAN Feng, YAO Ai-min, SUN Xiao-ping, WANG Chuan-yun, FAN Li-lei. Dual population genetic algorithm based on individual similarity[J]. Computer Engineering and Applications,2011,32(5):1789-1791.
    [6] 田小梅,郑金华,李合军. 基于父个体相似度的自适应遗传算法[J]. 计算机工程与应用,2005,4(18):61-63.
    Tian Xiaomei,Zheng Jinhua,Li Hejun.Adaptive Genetic Algorithm Based on Parents’Similarity[J]. Computer Engineering and Applications,2005,4(18):61-63.
    [7] 李军华,黎明,袁丽华. 基于个体相似度交叉率自适应的遗传算法[J]. 系统工程,2006,24(9):108-111.
    [8] 巩固,郝国生,王文虎. 基于海明距离改进的自适应遗传算法[J]. 江苏师范大学学报(自然科学版),2014,32(4):51-54.
    Gong Gu,Hao Guosheng,Wang Wenhu. Improved adaptive genetic algorithm based on Hamming distance[J]. Journal of Jiangsu Normal University(Natural Science Edition),2014,32(4):51-54.
    [9] 张琛,詹志辉. 遗传算法选择策略比较[J]. 计算机工程与设计,2009,30(23):5471-5474.
    ZHANG Chen, ZHAN Zhi-hui. Comparisons of selection strategy in genetic algorithm[J].Computer Engineering and Design,2009,30(23):5471-5474.
    [10] 金晶,苏勇. 一种改进的自适应遗传算法[J]. 计算机工程与应用,2005,41(18):64-69.
    Jin Jing,Su Yong. An Improved Adaptive Genetic Algorithm[J]. Computer Engineering and Applications,2005,41(18):64-69.
    [11] 梁兴建,詹志辉,谭 伟,彭建新. 基于最优保留策略的改进遗传算法[J]. 计算机工程与设计,2014,35(11):3985-3990.
    LIANG Xing-jian,ZHAN Zhi-hui,TAN Wei,PENG Jian-xin.Improved genetic algorithm based on elitist reserved strategy[J]. COMPUTER ENGINEERING AND DESIGN,2014,35(11):3985-3990.
    [12] S. L. Ho, Guizhi Xu, W. N. Fu. Optimization of Array Magnetic Coil Design for Functional MagneticStimulation Based on Improved Genetic Algorithm[J]. IEEE TRANSACTIONS ON MAGNETICS, 2009, 45(10) :4849-4852
    [13] De Jong K A. An analysis of the behavior of a class of generic adaptive systems[D]. University o f Michigan, 1975.

计量
  • 文章访问数:  1120
  • HTML全文浏览量:  200
  • PDF下载量:  363
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 修回日期:  2015-04-09
  • 刊出日期:  2015-11-24

目录

    /

    返回文章
    返回