Entire Functions Sharing Polynomial With Their Higher Order Derivative
-
摘要: 证明了如果 f 是非常数整函数满足超级 σ2(f)<12 ,~ k 是一正整数,~如果 f 和 f(k) 分担多项式 p(z) ~CM,~其中 p(z)=amzm+am−1zm−1+⋯+a0 ~( am≠0, am−1, …, a0 均为常数)~,~那么 f(k)(z)−p(z)=c(f(z)−p(z)) ,~其中 c 是非零常数.
-
关键词:
- 超级
Abstract: It is shown that if f be a nonconstant entire function such that the hyper order σ2(f)<12 ,~k being a positive integer,~and if f and f(k) share polynomial p(z) CM,~where p(z)=amzm+am−1zm−1+⋯+a0 with am≠0, am−1, …, a0 are all constants,~then f(k)(z)−p(z)=c(f(z)−p(z)) where c is a nonzero constant.-
Keywords:
- Hyper-order
-
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: