Processing math: 100%

与高阶导数分担多项式的整函数

陈敏风, 陈宗煊

陈敏风, 陈宗煊. 与高阶导数分担多项式的整函数[J]. 华南师范大学学报(自然科学版), 2014, 46(2).
引用本文: 陈敏风, 陈宗煊. 与高阶导数分担多项式的整函数[J]. 华南师范大学学报(自然科学版), 2014, 46(2).
Entire Functions Sharing Polynomial With Their Higher Order Derivative[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(2).
Citation: Entire Functions Sharing Polynomial With Their Higher Order Derivative[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(2).

与高阶导数分担多项式的整函数

基金项目: 

国家自然科学基金

详细信息
    通讯作者:

    陈宗煊

Entire Functions Sharing Polynomial With Their Higher Order Derivative

  • 摘要: 证明了如果 f 是非常数整函数满足超级 σ2(f)<12 ,~ k 是一正整数,~如果 f  f(k) 分担多项式 p(z) ~CM,~其中 p(z)=amzm+am1zm1++a0 ~( am0, am1, , a0 均为常数)~,~那么 f(k)(z)p(z)=c(f(z)p(z)) ,~其中 c 是非零常数.
    Abstract: It is shown that if f be a nonconstant entire function such that the hyper order σ2(f)<12 ,~k being a positive integer,~and if f and f(k) share polynomial p(z) CM,~where p(z)=amzm+am1zm1++a0 with am0, am1, , a0 are all constants,~then f(k)(z)p(z)=c(f(z)p(z)) where c is a nonzero constant.
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-13
  • 修回日期:  2013-08-31
  • 刊出日期:  2014-03-24

目录

    /

    返回文章
    返回