关于二阶线性微分方程解的增长性
On The Growth of Solutions of Second Order Linear Differential Equations
-
摘要: 研究了二阶微分方程~f''+A_1(z)P(e^z)f'+A_0(z)Q(e^z)f=0~和~f''+(A_1(z)P(e^z)+D_1(z))f'\\+(A_0(z)Q(e^z)+D_0(z))f=0~ 解的增长性,其中~P(e^z)~与~Q(e^z)~是~e^z~的非常数多项式,它们的常数项\\都为零,且次数不相等.~证明了该方程的每个非零解有无穷级.Abstract: The growth of solutions of the differential equations f''+A_1(z)P(e^z)f'+A_0(z)Q(e^z)f=0 and f''+(A_1P(e^z)+D_1(z))f'+(A_0Q(e^z)+D_0(z))f=0 is investigated, where~P(e^z)~and~Q(e^z)~are nonconstant polynomials without constants, and degP is not equal to degQ. It is showed that the order of growth of each nonzero solution of the above equations is infinite.
下载: