一类具有缺项级数系数的高阶微分方程解的增长性

Growth of Solutions of a Class of Higher-Order Differential Equations with Coefficients Being Fabry Gap

  • 摘要: 本文研究了高阶非齐次微分方程 f^(k)+A_k-1f^(k-1)+...+A_1f'+A_0f=F, 其中A_0,A_1,...A_k-1,F是整函数.当存在某个系数A_d为缺项级数并对方程的解的性质起主要支配作用时,得到上述微分方程和对应的齐次微分方程在一定条件下超越解超级的精确估计.

     

    Abstract: This paper investigates the growth of solutions of a class of higher-order nonhomogeneous linear differential equation f^(k)+A_k-1f^(k-1)+...+A_1f'+A_0f=F and its homogeneous linear differential equation, where A_0,A_1,...A_k-1,F are entire functions and the dominant coefficient A_d has fabry gap, we obtain general estimates of the growth and zeros of entire transcendtial solutions of higher order linear differential equations.

     

/

返回文章
返回