分裂四元数矩阵方程X+AXB=Cη-Hermitian解的矩阵半张量积解法

Semi-tensor Product Method of η-Hermitian Solution of Split Quaternion Matrix Equation X+AXB=C

  • 摘要: 为了研究分裂四元数矩阵方程X+AXB=C的结构,文章给出具有普适性的分裂四元数矩阵方程的特殊解的求解方法,提出了分裂四元数的实向量表示,并结合矩阵半张量积研究分裂四元数矩阵方程X+AXB=Cη-Hermitian解。文章首先利用矩阵半张量积与分裂四元数矩阵A、B、C的实向量表示,推导出分裂四元数矩阵A+BcAABABC的实向量表示,将分裂四元数矩阵方程转化为等价实矩阵方程形式;然后,利用分裂四元数η-Hermitian矩阵的特殊结构与矩阵半张量积的相关理论,提取其独立元素,简化运算;最后,利用实矩阵方程Ax=b有解的充要条件,得到分裂四元数矩阵方程η-Hermitian解存在的充要条件和通解,并通过数值算例验证了方法的有效性。文章对分裂四元数矩阵方程X+AXB=Cη-Hermitian解的研究是对矩阵理论的补充,可为求解矩阵方程的特殊解提供新的思路。

     

    Abstract: In order to study the structure of the split quaternion matrix equation X+AXB=C, a universal method is proposed for solving the special solution of the split quaternion matrix equations, and a real vector representation of the split quaternions is proposed. The η-Hermitian solution of the split quaternion matrix equation X+AXB=C is studied by combining the matrix semi-tensor product. Firstly, the matrix semi-tensor product and the real vector representations of the split quaternion matrices A, B and C are utilized to derive the real vector representations of the split quaternion matrices A+B, cA, AB and ABC. And the split quaternion matrix equation is transformed into an equivalent real matrix equation form. Then, utilizing the special structure of the split quaternion η-Hermitian matrix and the relevant theory of matrix semi-tensor product, independent elements are extracted to simplify the computation. Finally,leveraging the necessary and sufficient conditions for the existence of a solution to the real matrix equation Ax=b, the necessary and sufficient conditions and general solution for the existence of η-Hermitian solutions for the split quaternion matrix equation are obtained. The validity of the method has been verified with the aid of numerical examples. The study of η-Hermitian solutions for the split quaternion matrix equation X+AXB=C in this article is a supplement to matrix theory and provides new insights for solving special solutions of matrix equations.

     

/

返回文章
返回