团队感知的多层视图自适应社区检测算法研究

Research on Multi-View Adaptive Team Aware Community Detection Algorithm

  • 摘要: 针对目前社区检测方法忽略社交网络中本身所固有的群体信息的问题,文章提出了一种团队感知的多层视图自适应社区检测算法(Adapt-TaCD):首先,将用户交互信息定义为交互视图,将团队信息定义为团队视图,构建多层视图网络;然后,采用Jaccard相似度来度量节点跨视图一阶结构邻近性的一致性;最后,在新构建的多层视图网络基础上,采用模块度方法来挖掘社区结构,最终得到社区划分的最优解。另外,为验证算法性能,利用学者网原始社交网络数据构建了具有多维度关系特性的基准测试数据集(CDDS-SCHOLAT)。在CDDS-SCHOLAT数据集的NET-3K网络上进行了最优系统参数γ选取实验,确定γ=1.5为系统参数最优值。利用此最优值,将Adapt-TaCD算法与AP、Ncut、Louvain、NSA、VGAER算法在CDDS-SCHOLAT数据集中不同规模的网络上进行社区检测实验。实验结果表明:Adapt-TaCD算法的ACC、NMI、ARI的标准差分别为0.052 0、0.009 9、0.050 3,在不同规模的网络上检测结果较稳定;与AP、Ncut、Louvain、NSA、VGAER算法相比,Adapt-TaCD算法的ACC、NMI、ARI值分别平均提高了0.36、0.38、0.39;Adapt-TaCD算法在效率方面表现较优,在节点数为10 000的网络上的运行时间仅为30.25 s。研究证明,Adapt-TaCD算法在准确性、稳定性和计算效率上均具有显著优势,尤其适用于大规模多层关系网络的社区发现任务。

     

    Abstract: To address the limitation of existing community detection methods in overlooking inherent group information within social networks, a multi-view adaptive team aware community detection algorithm (Adapt-TaCD) is proposed. By defining user interaction information as an interaction view and team information as a team view, a multi-view network is constructed. The Jaccard similarity is employed to measure the consistency of nodes' first-order structural proximity across these views. Building upon this multi-view network, a modularity-based method is adopted to uncover community structures and derive the optimal community partitioning. To validate algorithm performance, the benchmark dataset CDDS-SCHOLAT with multi-relational characteristics from raw SCHOLAT social network data is constructed. Experiments for selecting the optimal system parameter γ were conducted on the NET-3K network of the CDDS-SCHOLAT dataset, confirming γ=1.5 as the optimal value for the system parameter. Using this optimal value, the Adapt-TaCD algorithm was compared with AP, Ncut, Louvain, NSA, and VGAER algorithms in community detection experiments on networks of varying scales within the CDDS-SCHOLAT dataset. The experimental results demonstrate that the Adapt-TaCD algorithm maintains stable performance across varying network scales with standard deviations of 0.052 0 for ACC, 0.009 9 for NMI, and 0.050 3 for ARI; compared to AP, Ncut, Louvain, NSA, and VGAER, Adapt-TaCD algorithm achieved average improvements of 0.36, 0.38, and 0.39 in ACC, NMI, and ARI, respectively; and the Adapt-TaCD algorithm exhibits superior efficiency, when processing a network with 10 000 nodes, it takes only 30.25 s. Experimental results confirm that Adapt-TaCD de-monstrates significant advantages in accuracy, stability, and computational efficiency, and is particularly suited for community detection tasks in large-scale multi-relational networks.

     

/

返回文章
返回