基于热-流-固耦合的CO2多级压裂增强型地热系统取热数值模拟

Numerical Simulation of Heat Extraction in CO2 Multi-Stage Hydraulic Fracturing EGS Based on Thermal-Hydraulic-Mechanical Coupled Model

  • 摘要: 在考虑裂缝内非达西渗流和局部非热平衡传热(LTNE)的基础上,构建了CO2多级压裂EGS热-流-固耦合模型,并分析了复杂裂缝网络内渗流传热机制;对比不同裂缝网络条件下CO2的多级压裂EGS取热效果,揭示了主裂缝、次级裂缝和天然裂缝在EGS取热过程中作用机制,研究了主裂缝条数、主裂缝开度、次级裂缝水平长度和天然裂缝渗透率等关键裂缝参数对EGS取热效果影响规律。结果表明:裂缝网络中存在非达西渗流,特别是在主裂缝中尤为显著。与只考虑主裂缝和天然裂缝的算例相比,进一步考虑次级裂缝后,其累积能量增加80.36%;在忽略主裂缝和次级裂缝后,其累积能量减少64.58%,说明人工裂缝网络对强化取热具有重要的影响。此外,主裂缝条数对取热效果影响最显著,当次级裂缝直接相交时累积能量达到最高。该研究有望为EGS复杂裂缝网络优化研究提供重要参考。

     

    Abstract: Taking into account non-Darcy flow within fractures and local thermal non-equilibrium (LTNE), an improved thermal-hydraulic-mechanical coupled model is established for CO2 multi-stage hydraulic fracturing EGS. The study comprehensively analyzes the mechanisms of fluid flow and heat transfer within complex fracture networks. A comparative analysis of the thermal performance of CO2 multi-stage hydraulic fracturing EGS under varying fracture network configurations is conducted, elucidating the respective roles of primary fractures, secondary fractures, and natural fractures in the heat extraction process. It also investigates the influence of key fracture parameters, such as the number of primary fractures, the aperture of primary fractures, the horizontal length of secondary fractures, and the permeability of natural fractures, on the thermal extraction efficiency of EGS. The results indicate the presence of non-Darcy flow within the fracture network, particularly pronounced in primary fractures. In comparison to cases considering only primary and natural fractures, the inclusion of secondary fractures leads to an 80.36% increase in accumulative energy extraction. Conversely, neglecting both primary and secondary fractures results in a 64.58% reduction in accumulative energy, underscoring the pivotal role of artificial fracture networks in enhancing heat extraction performance. Moreover, the number of primary fractures exerts the most substantial influence on thermal recovery efficiency, with the highest accumulative energy observed when secondary fractures directly intersect. This research provides critical insights for the optimization of EGS in complex fracture networks.

     

/

返回文章
返回