The Research of Some Point Set Under the Condition of G-equicontinuity
-
摘要:
在映射f是G-等度连续的条件下,研究了G-链回归点、G-非游荡点、G-极限点和G-回归点之间的关系,得到如下结论:(1)RG(f)=WG(f)=ΩG(f); (2)WG(f)=CRG(f)=∞⋂n=1fn(X); (3)f是G-等度连续的当且仅当WG(f)中的所有点都是G-等度连续点。以上结论充实了度量G-空间中G-链回归点、G-非游荡点、G-极限点和G-回归点的理论。
Abstract:The relationship among G-chain recurrent point, G-nonwandering point, G-limit point and G-recurrent point were studied under the condition that the map f is G-equicontinuous. The following conclusions are obtained: (1)RG(f)=WG(f)=ΩG(f); (2)WG(f)=CRG(f)=∞⋂n=1fn(X); (3)f is G-equicontinuous if and only if all point in WG(f) are G-equicontinuous points. The above conclusions enrich the theory of G-chain recurrent point, G-nonwandering point, G-limit point, and G-recurrent point in metric G-space.
-
设1p+1q=1(p>1),α, β ∈R,K(x, y)非负可测,若Lαp(0,+∞)={f(x)⩾0:‖f‖p,α=(∫+∞0xαfp(x)dx)1/p<+∞}, 则称不等式
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy⩽M‖f‖p,α‖g‖q,β 为Hilbert型积分不等式. 由于此类不等式与积分算子T:
T(f)(y)=∫+∞0K(x,y)f(x)dx 有密切的联系,故而Hilbert型积分不等式对于研究算子T的有界性与算子范数有重要意义.
1991年,XU和GAO[1]首次提出了研究Hilbert型不等式的权系数方法. 该方法的核心是:引入2个搭配参数a、b,利用Hölder不等式,可得到如下形式的不等式:
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy⩽W1/p1(b,p)W1/q2(a,q)(∫+∞0xα(a,b)fp(x)dx)1/p×(∫+∞0yβ(a,b)gq(y)dx)1/q. (1) 一般地,随意选取的搭配参数a、b并不能使式(1)的常数因子W11/p(b, p)W21/q(a, q)最佳. 已有的相关研究[2-13]基本上都是凭借丰富的经验和娴熟的分析技巧选取适当的搭配参数a、b,从而获得最佳的Hilbert型不等式.
若选取的搭配参数a、b能够使式(1)的常数因子最佳,则称其为适配参数或适配数. 文献[14]曾讨论了齐次核的Hilbert型级数不等式的适配参数问题,本文将对拟齐次核的Hilbert型积分不等式讨论搭配参数a、b成为适配数的充分必要条件,并讨论其应用.
1. 预备知识
设G(u, v)是λ阶齐次函数,λ1λ2>0,则称K(x, y)=G(xλ1, yλ2)为拟齐次函数. 显然K(x, y)为拟齐次函数等价于:对t>0,有
K(tx,y)=tλ1λK(x,t−λ1/λ2y),K(x,ty)=tλ2λK(t−λ2/λ1x,y). 下面给出本文证明过程中所需的引理.
引理1 设1/p+1/q=1 (p>1),a, b, λ∈R,λ1λ2>0,G(u, v)是λ阶齐次非负函数,K(x, y)=G(xλ1, yλ2),aq/λ1+bp/λ2=1/λ1+1/λ2+ λ,记
W1(b,p)=∫+∞0K(1,t)t−bp dt,W2(a,q)=∫+∞0K(t,1)t−aq dt, 则W1(b, p)/λ1=W2(a, q)/λ2,且
ω1(b,p,x)=∫+∞0K(x,y)y−bp dy=xλ1(λ−bp/λ2+1/λ2)W1(b,p),ω2(a,q,y)=∫+∞0K(x,y)x−aq dx=yλ2(λ−aq/λ1+1/λ1)W2(a,q). 证明 由aq/λ1+bp/λ2=1/λ1+1/λ2+ λ,可得- λ1λ + λ1bp/λ2-λ1/λ2-1=-aq. 则有
W1(b,p)=∫+∞0tλ2λK(t−λ2/λ1,1)t−bp dt= λ1λ2∫+∞0K(u,1)u−λ1λ+λ1bp/λ2−λ1/λ2−1 du= λ1λ2∫+∞0K(u,1)u−aq du=λ1λ2W2(a,q), 故W1(b, p)/λ1=W2(a, q)/λ2.
作变换y=xλ1/λ2t,有
ω1(b,p,x)=∫+∞0xλ1λK(1,x−λ1/λ2y)y−bp dy= xλ1(λ−bp/λ2+1/λ2)∫+∞0K(1,t)t−bp dt= xλ1(λ−bp/λ2+1/λ2)W1(b,p). 同理可证ω2(a, q, y)=yλ2(λ-aq/λ1+1/λ1)W2(a, q). 证毕.
2. 适配参数的充分必要条件
定理1 设1/p+1/q=1 (p>1),a, b, λ∈R,λ1λ2>0,G(u, v)是λ阶齐次非负可测函数,K(x, y)=G(xλ1, yλ2),W1(b, p)与W2(a, q)如引理1所定义. 那么
(1) 若α=λ1[λ+1λ2+p(aλ1−bλ2)],β=λ2[λ+1λ1+p(bλ2−aλ1)], 则有
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy⩽W1/p1(b,p)W1/q2(a,q)‖f‖p,α‖g‖q,β, (2) 其中, f(x)∈Lαp(0,+∞),g(y)∈Lβq(0,+∞).
(2) 式(2)中的常数因子W11/p(b, p)W21/q(a, q)是最佳的,当且仅当aq/λ1+bp/λ2=1/λ1+1/λ2+ λ,W1(b, p)和W2(a, q)都收敛. 当aq/λ1+bp/λ2=1/λ1+1/λ2+ λ时,式(2)化为
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy⩽ W0|λ1|1/q|λ2|1/p‖f‖p,apq−1‖g‖q,bpq−1, (3) 其中, W0=|λ1|W2(a, q)= |λ2|W1(b, p).
证明 (i)选择a、b为搭配参数. 根据Hölder不等式和引理1,利用权系数方法,有
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy=∫+∞0∫+∞0(xaybf(x))(ybxag(y))K(x,y)dxdy⩽(∫+∞0∫+∞0xapybpfp(x)K(x,y)dxdy)1/p×(∫+∞0∫+∞0ybqxaqgq(y)K(x,y)dxdy)1/q=(∫+∞0xapfp(x)ω1(b,p,x)dx)1/p×(∫+∞0ybqgq(y)ω2(a,q,y)dy)1/q=W1/p1(b,p)W1/q2(a,q)×(∫+∞0xap+λ1(λ−bp/λ2+1/λ2)fp(x)dx)1/p×(∫+∞0ybq+λ2(λ−aq/λ1+1/λ1)gq(y)dx)1/q=W1/p1(b,p)W1/q2(a,q)‖f‖p,α‖g‖q,β, 故式(2)成立.
(ii) 充分性:设aq/λ1+bp/λ2=1/λ1+1/λ2+ λ,W1(b, p)和W2(a, q)收敛. 由引理1,有W1(b, p)/λ1=W2(a, q)/λ2,故
W1/p1(b,p)W1/q2(a,q)=(λ2λ1)1/qW1(b,p)=W0|λ1|1/q|λ2|1/p, 且α=apq-1,β=bpq-1,于是式(2)可化为式(3).
设式(3)的最佳常数因子为M0,则M0≤W0/(|λ11/q|λ2|1/p),且用M0取代式(3)中的常数因子后,式(3)仍然成立.
取充分小的ε>0及δ>0,令
f(x)={x(−apq−|λ1|ε)/p(x⩾1),0(0<x<1);g(y)={y(−bpq−|λ2|ε)/q(y⩾δ),0(0<y<δ). 则
‖f‖p,apq−1‖g‖q,bpq−1=(∫+∞1x−1−|λ1|εdx)1/p(∫+∞δy−1−|λ2|εdy)1/q=(1|λ1ε|)1/p(1|λ2|εδ−|λ2|ε)1/q=1ε|λ1|1/p|λ2|1/qδ−|λ2|ε/q,∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy=∫+∞1x−aq−|λ1|ε/p(∫+∞δy−bp−|λ2|ε/qK(x,y)dy)dx=∫+∞1x−aq−|λ1|ε/p+λλ1(∫+∞δy−bp−|λ2|ε/qK(1,x−λ1/λ2y)dy)dx=∫+∞1x−1−|λ1|ε(∫+∞x−λ1/λ2δt−bp−|λ2|ε/qK(1,t)dt)dx⩾∫+∞1x−1−|λ1|ε(∫+∞δt−bp−|λ2|ε/qK(1,t)dt)dx=1|λ1|ε∫+∞δt−bp−|λ2|ε/qK(1,t)dt. 于是
1|λ1|∫+∞δt−bp−|λ2|ε/qK(1,t)dt⩽M0|λ1|1/p|λ2|1/qδ−|λ2|ε/q. 先令ε→0+,再令δ→0+,得
W1(b,p)=∫+∞0t−bpK(1,t)dt⩽M0|λ1|1/p|λ2|1/q. 再根据引理1,可得到W0/(|λ1|1/q|λ2|1/p)≤M0. 所以式(3)的最佳常数因子M0=W0/(|λ1|1/q|λ2|1/p).
必要性:设式(2)的常数因子W11/p(b, p)W21/q(a, q)是最佳的,则W1(b, p)和W2(a, q)是收敛的. 下证aq/λ1+bp/λ2=1/λ1+1/λ2+ λ.
记1λ1aq+1λ2bp−(1λ1+1λ2+λ)=c,a1=a−λ1cpq,b1=b−λ2cpq,则
α=λ1[λ+1λ2+p(a1λ1−b1λ2)]=α1,β=λ2[λ+1λ1+p(b1λ2−a1λ1)]=β1,W2(a,q)=∫+∞0K(t,1)t−aq dt=λ2λ1∫+∞0K(1,t)t−bp+λ2c dt. 于是可知式(2)等价于
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy⩽W1/p1(b,p)(λ2λ1∫+∞0K(1,t)t−bp+λ2c dt)1/q‖f‖p,α1‖g‖q,β1. 又经计算有a1q/λ1+b1p/λ2=1/λ1+1/λ2+ λ,α1=a1pq-1,β1=b1pq-1,故式(2)进一步等价于
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy⩽W1/p1(b,p)(λ2λ1∫+∞0K(1,t)t−bp+λ2c dt)1/q×‖f‖p,a1pq−1‖g‖q,b1pq−1. (4) 根据假设,式(4)的最佳常数因子是W11/p(b, p)×(λ2λ1∫+∞0K(1,t)t−bp+λ2cdt)1/q. 又由1λ1a1q+1λ2b1p=1λ1+1λ2+λ及充分性的证明,可知式(4)的最佳常数因子为
1|λ1|1/q|λ2|1/p(|λ2|∫+∞0K(1,t)t−b1p dt)=(λ2λ1)1/q∫+∞0K(1,t)t−bp+λ2c/q dt 于是得到
∫+∞0K(1,t)t−bp+λ2c/q dt=W1/p1(b,p)(∫+∞0K(1,t)t−bp+λ2c dt)1/q. (5) 对于1和tλ2c/q,应用Hölder不等式,有
∫+∞0K(1,t)t−bp+λ2c/q dt=∫+∞0tλ2c/qK(1,t)t−bp dt⩽(∫+∞01pK(1,t)t−bp dt)1/p(∫+∞0tλ2cK(1,t)t−bp dt)1/q=W1/p1(b,p)(∫+∞0K(1,t)t−bp+λ2c dt)1/q. (6) 根据式(5),可知式(6)取等号. 又根据Hölder不等式取等号的条件,可得tλ2c/q=常数,故c=0,即aq/λ1+bp/λ2=1/λ1+1/λ2+ λ1. 证毕.
注1 定理1表明: 当且仅当aq/λ1+bp/λ2=1/λ1+1/λ2+ λ时,搭配参数a、b是适配参数. 因此,只要选取a、b满足aq/λ1+bp/λ2=1/λ1+1/λ2+ λ,就可以得到各种各样的具有最佳常数因子的Hilbert型积分不等式.
推论1 设1/p+1/q=1 (p>1),λ1λ2>0,λ >0,1/r+1/s=1 (r>1),α=p(1- λλ1/r)-1,β=q(1- λλ2/s)-1,则
∫+∞0∫+∞0f(x)g(y)(xλ1+yλ2)λdxdy⩽1|λ1|1/q|λ2|1/p B(λr,λs)‖f‖p,α‖g‖q,β, (7) 其中的常数因子是最佳的,f(x)∈Lpα(0, +∞),g(y)∈Lqβ(0, +∞).
证明 记K(x, y)=G(xλ1, yλ2)=1/(xλ1+yλ2)λ,则G(u, v)是-λ阶齐次非负函数. 选取搭配参数a=1q(1−λλ1r),b=1p(1−λλ2s), 可得
1λ1aq+1λ2bp=1λ1(1−λλ1r)+1λ2(1−λλ2s)=1λ1+1λ2−λ, 故a、b是适配参数. 又因为apq-1=p(1- λλ1/r)-1=α,bpq-1=q(1- λλ2/s)-1=β,且
W0=|λ2|W1(b,p)=|λ2|∫+∞01(1+tλ2)λtλλ2/s−1 dt=∫+∞01(1+u)λuλ/s−1 du=B(λs,λ−λs)=B(λr,λs). 根据定理1,式(7)成立,且其常数因子是最佳的. 证毕.
3. 在求积分算子范数中的应用
根据Hilbert型不等式与相应积分算子的关系理论,由定理1可得如下定理.
定理2 设1/p+1/q=1 (p>1),a, b, λ ∈ R,λ1λ2>0,α=apq-1,β=bpq-1,G(u, v)是λ阶齐次非负可测函数,K(x, y)=G(xλ1, yλ2),且
W1(b,p)=∫+∞0K(1,t)t−bp dt<+∞,W2(a,q)=∫+∞0K(t,1)t−aq dt<+∞, 则当aq/λ1+bp/λ2=1/λ1+1/λ2+ λ时,积分算子T:
T(f)(y)=∫+∞0K(x,y)f(x)dx,f(x)∈Lαp(0,+∞) 是从Lpα(0, +∞)到Lpβ(1-p)(0, +∞)的有界算子,且T的算子范数为
‖T‖=|λ2|W1(b,p)|λ1|1/q|λ2|1/p=(λ2λ1)1/q∫+∞0K(1,t)t−bp dt. 推论2 设1/p+1/q=1 (p>1),λ1λ2>0,-1 < λ < min{1±4/λ1, 1±4/λ2},α=p[1+ λ1(λ -1)/2]-1,β=p[1+ λ2(λ -1)/2]-1,则积分算子T:
T(f)(y)=∫+∞0|xλ1−yλ2|λmax{xλ1,yλ2}f(x)dx,f(x)∈Lαp(0,+∞) 是从Lpα(0, +∞)到Lpβ(1-p)(0, +∞)的有界算子,且T的算子范数为
‖T‖=1|λ1|1/q|λ2|1/p[ B(λ+1,1−λ2−2λ2)+ B(λ+1,1−λ2+2λ2)]. 证明 记K(x, y)=G(xλ1, yλ2)= |xλ1-yλ2|λ/max{xλ1, yλ2},则G(u, v)是λ -1阶齐次函数. 取a= 1q[1+λ12(λ−1)],b=1p[1+λ22(λ−1)],则
1λ1aq+1λ2bp=1λ1[1+λ12(λ−1)]+1λ2[1+λ22(λ−1)]= 1λ1+1λ2+λ−1, 故a、b是适配参数. 又apq−1=p[1+λ12(λ−1)]−1=α,bpq−1=q[1+λ22(λ−1)]−1=β. 则
(λ2λ1)1/q∫+∞0K(1,t)t−bp dt=(λ2λ1)1/q∫+∞0|1−tλ2|λmax{1,tλ2}t−[1+λ2(λ−1)/2]dt=1|λ1|1/q|λ2|1/p[ B(λ+1,1−λ2−2λ2)+B(λ+1,1−λ2+2λ2)]<+∞. 根据定理2,知推论2成立. 证毕.
推论3 设1/p+1/q=1 (p>1),1/r+1/s=1 (r>1),λ1λ2>0,α=p(1- λ1/r)-1,β=q(1- λ2/s)-1. 则积分算子T:
T(f)(y)=∫+∞0ln(xλ1/yλ2)xλ1−yλ2f(x)dx,f(x)∈Lαp(0,+∞) 是从Lpα(0, +∞)到Lpβ(1-p)(0, +∞)的有界算子,且T的算子范数为
‖T‖=1|λ1|1/q|λ2|1/p[ζ(2,1r)+ζ(2,1s)], 其中ζ(t, a)是Riemann函数.
证明 记
K(x,y)=G(xλ1,yλ2)=ln(xλ1/yλ2)xλ1−yλ2, 则G(u, v)是-1阶齐次非负函数.
取搭配参数a=1q(1−λ1r),b=1p(1−λ2s),则
1λ1aq+1λ2bp=1λ1(1−λ1r)+1λ2(1−λ2s)=1λ1+1λ2−1, 故a、b是适配参数. 又apq-1=p(1- λ1/r)-1=α,bpq-1=q(1- λ2/s)-1=β,且
(λ2λ1)1/q∫+∞0K(1,t)t−bp dt=(λ2λ1)1/q∫+∞0ln(t−λ2)1−tλ2tλ2/s−1 dt=1|λ1|1/q|λ2|1/p[ζ(2,1r)+ζ(2,1s)]<+∞ 根据定理2,知推论3成立. 证毕.
-
[1] 冀占江, 覃桂茳, 时伟. 群作用下逆极限空间中移位映射的动力学性质[J]. 安徽大学学报(自然科学版), 2020, 44(5): 41-45. JI Z J, QING G J, SHI W. Dynamical properties of the shift map in inverse limit space of group action[J]. Journal of Anhui University(Natural Science Edition), 2020, 44(5): 41-45.
[2] 曹毅, 吴晓荣. 正上密度回归点集的若干性质[J]. 福州大学学报(自然科学版), 2016, 44(3): 401-404. CAO Y, WU X R. Some properties of positive upper density recurrence points[J]. Journal of Fuzhou University(Natural Science Edition), 2016, 44(3): 401-404.
[3] 冀占江. 群作用下逆极限空间上移位映射的G非游荡点与G链回归点[J]. 湖南师范大学自然科学学报, 2018, 41(6): 77-81. JI Z J. G-nonwandering points and G-chain recurrent points of the shift map in the inverse limit spaces of a topological group action[J]. Journal of Natural Science of Hunan Normal University, 2018, 41(6): 77-81.
[4] 贺毅, 张君, 白丹莹. 逆极限空间转移映射非游荡集的中心测度[J]. 重庆工商大学学报(自然科学版), 2015, 32(5): 49-51. HE Y, ZHANG J, BAI D Y. Measurement of the center of the inverse limit space transition mapping none-wande-ring set[J]. Journal of Chongqing Technology and Business University(Natural Science Edition), 2015, 32(5): 49-51.
[5] 霍展福. 类帐篷映射上的链回归点集研究[D]. 南宁: 广西大学, 2019. HUO Z F. Study on the sat of chain recurrent points on the tent-like mapping[D]. Nanning: Guangxi University, 2019.
[6] 孙太祥, 席鸿建. 图映射的负极限集[J]. 中国科学: 数学, 2017, 47(5): 591-598. SUN T X, XI H J. Negative limit sets of graph maps[J]. Scientia Sinica: Mathematica, 2017, 47(5): 591-598.
[7] 罗飞, 金渝光. 强一致收敛条件下序列系统与极限系统的关联性[J]. 重庆师范大学学报(自然科学版), 2015, 32(4): 78-80. LUO F, JIN Y G. The condition of strong uniform convergence of relationship between sequence system and limit the system[J]. Journal of Chongqing Normal University(Natural Science), 2015, 32(4): 78-80.
[8] 孙太祥, 曾凡平, 秦斌, 等. 广义树映射的吸引中心和w-极限集空间[J]. 中国科学: 数学, 2018, 48(9): 1131-1142. SUN T X, ZENG F P, QING B, et al. The attracting centre and space of w-limit sets of a general tree map[J]. Scientia Sinica: Mathematica, 2018, 48(9): 1131-1142.
[9] 耿雪萍. 动力系统中几类点集的不变性研究[D]. 重庆: 重庆师范大学, 2015. GENG X P. Study invariance of several points set in dynamical system[D]. Chongqing: Chongqing Normal University, 2015.
[10] 陈彬. 动力系统中的回复性与混沌行为[D]. 南京: 南京大学, 2016. CHEN B. Recurrence and chaotic behavior of dynamical systems[D]. Nanjing: Nanjing University, 2016.
[11] 曾眺英. 有向部分半群作用下的敏感性[J]. 华南师范大学学报(自然科学版), 2021, 53(6): 105-110. doi: 10.6054/j.jscnun.2021099 ZENG T Y. The sensitivity under directed partial semi-group actions[J]. Journal of South China Normal University(Natural Science Edition), 2021, 53(6): 105-110. doi: 10.6054/j.jscnun.2021099
[12] AHMADI S A. Invariants of topological G-conjugacy on G-spaces[J]. Mathematica Moravica, 2014, 18: 67-75. doi: 10.5937/MatMor1401067A
[13] JI Z J. The G-sequence shadowing property and G-equicontinuity of the inverse limit spaces under group action[J]. Open Mathematics, 2021, 19: 1290-1298. doi: 10.1515/math-2021-0102
[14] BALOGH Z, LAVER V. Unitary subgroups of commutative group algebras of the characteristic two[J]. Ukrainian Mathematical Journal, 2020, 72: 871-879. doi: 10.1007/s11253-020-01829-3
[15] CHOI T, KIM J. Decomposition theorem on G-spaces[J]. Osaka Journal of Mathematics, 2009, 46: 87-104.
-
期刊类型引用(1)
1. 肖世伟,李承凯,杨美娜,冯祥虎,孙国萃,杜军. MIPS指令集的流水线CPU模型机设计. 单片机与嵌入式系统应用. 2023(02): 15-18 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 53
- HTML全文浏览量: 9
- PDF下载量: 34
- 被引次数: 2