Schwarz引理的2个重要推广

Two Important Generalizations of Schwarz Lemma

  • 摘要: 首先,利用Schwarz引理给出了Carathéodory不等式的一种证明方法;然后,对于一类在\mathbbC上全纯且以\infty为本性奇点的复变函数f,得到了\lim\limits _r \rightarrow \infty \fracA(r)r^n与\infty之间的关系;其次,对于满足某个条件的函数类f_a,利用Schwarz引理得到其单叶圆盘半径,并将其推广到一类满足条件f(0)=0, f^\prime(0)=a>0且将B(0, r)映射到自身的函数类f_a^r,得到了此函数类中函数的单叶圆盘半径。

     

    Abstract: A proof of Carathéodory inequality by Schwarz lemma is given, then the relation between \lim\limits _r \rightarrow \infty \fracA(r)r^n and \infty is obtained for a class of complex functions f which are analytic on \mathbbC and take \infty as the natural singular point. Secondly, the radius of the univalent disk of a class of analytic functions f_a which satisfy some certain conditions was obtained by using Schwarz lemma. Finally, this result is extended to a class of analytic functions f_a^r which satisfy f(0)=0, f^\prime(0)=a>0 and maps B(0, r) to itself and obtain the radius of univalent disk of functions belong to f_a^r.

     

/

返回文章
返回