基于自适应权重混合策略主动学习的电能质量复合扰动识别

Identification of Complex Power Quality Disturbances Based on Adaptive Weighted Hybrid Strategy Active Learning

  • 摘要: 为了降低电能质量复合扰动(CPQDs)数据的标注成本,利用混合策略的主动学习方法与拉普拉斯极限学习机来识别电力配电网络中的CPQDs。提出将不同的主动学习采样策略进行混合,选择最富含信息和最具有代表性的CPQDs数据进行标记。在主动学习过程中利用对数函数自适应调整不同策略权重。为了提高分类器的性能,在监督学习和无监督学习的框架下将拉普拉斯流形正则化并嵌入到极限学习机中。将所提出的架构与主流的主动学习算法在代码合成以及硬件生成的数据集上进行了比较,结果显示所提出的方法拥有更好的性能。

     

    Abstract: To mitigate the annotation cost of Complex Power Quality Disturbances (CPQDs) data, a hybrid strategy active learning approach was employed along with Laplacian Extreme Learning Machine to identify CPQDs in power distribution networks. It combines different categories of active learning sampling strategies to select the most informative and representative CPQDs data for labeling. In the active learning process, the weights of different strategies are adaptively adjusted using a logarithmic function. To enhance classifier performance, a Laplacian manifold regularization was embeded into Extreme Learning Machine in both supervised and unsupervised frameworks. The proposed architecture is compared with state-of-the-art active learning algorithms on datasets generated through code synthesis and hardware, demonstrating superior performance of the proposed method.

     

/

返回文章
返回