Preparation and Solar Desalination Performance of 3D Photothermal Materials
-
摘要:
光热多孔材料是太阳能海水淡化应用的关键所在,受生物质天然多孔互联结构的启发,通过冷冻干燥和高温碳化工艺制备具有三维互联孔道结构的生物质碳基蒸发器,研究其微结构特征、水输送和蒸发性能以及三维结构对材料蒸发性能的增强作用。结果表明:该蒸发器具有高度互联的孔道结构和高达95.5%太阳光吸收率,在太阳光下实现了1.71 kg/(m2·h)的蒸发速率和89%的光热转换效率,可以有效蒸发和淡化海水。此外,在三维结构特征下,实现了高达2.65 kg/(m2·h)的蒸发速率,三维结构有效提升了材料的蒸发性能,显示了优异的太阳能蒸发/脱盐效果。
Abstract:Photothermal porous materials are the key to solar desalination applications. Inspired by the natural porous interconnected structure of biomass, a carbon-based evaporator with a 3D interconnected pore structure was prepared by freeze-drying and high-temperature carbonization processes, and the microstructural features, water transport and evaporation properties, as well as the enhancement of the material's evaporation performance by the 3D structure, were investigated. The results showed that the evaporator had a highly interconnected pore structure with the optical absorption of 95.5% and achieved an evaporation rate of 1.71 kg/(m2·h) and a photo-thermal conversion efficiency of 89% under one solar, which can effectively evaporate and desalinate seawater. In addition, an evaporation rate of 2.65 kg/(m2·h) was realized under 3D structural features, and the 3D structure effectively enhanced the evaporation performance of the material, showing excellent solar evaporation/desalination effects.
-
设1p+1q=1(p>1),α, β ∈R,K(x, y)非负可测,若Lαp(0,+∞)={f(x)⩾0:‖f‖p,α=(∫+∞0xαfp(x)dx)1/p<+∞}, 则称不等式
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy⩽M‖f‖p,α‖g‖q,β 为Hilbert型积分不等式. 由于此类不等式与积分算子T:
T(f)(y)=∫+∞0K(x,y)f(x)dx 有密切的联系,故而Hilbert型积分不等式对于研究算子T的有界性与算子范数有重要意义.
1991年,XU和GAO[1]首次提出了研究Hilbert型不等式的权系数方法. 该方法的核心是:引入2个搭配参数a、b,利用Hölder不等式,可得到如下形式的不等式:
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy⩽W1/p1(b,p)W1/q2(a,q)(∫+∞0xα(a,b)fp(x)dx)1/p×(∫+∞0yβ(a,b)gq(y)dx)1/q. (1) 一般地,随意选取的搭配参数a、b并不能使式(1)的常数因子W11/p(b, p)W21/q(a, q)最佳. 已有的相关研究[2-13]基本上都是凭借丰富的经验和娴熟的分析技巧选取适当的搭配参数a、b,从而获得最佳的Hilbert型不等式.
若选取的搭配参数a、b能够使式(1)的常数因子最佳,则称其为适配参数或适配数. 文献[14]曾讨论了齐次核的Hilbert型级数不等式的适配参数问题,本文将对拟齐次核的Hilbert型积分不等式讨论搭配参数a、b成为适配数的充分必要条件,并讨论其应用.
1. 预备知识
设G(u, v)是λ阶齐次函数,λ1λ2>0,则称K(x, y)=G(xλ1, yλ2)为拟齐次函数. 显然K(x, y)为拟齐次函数等价于:对t>0,有
K(tx,y)=tλ1λK(x,t−λ1/λ2y),K(x,ty)=tλ2λK(t−λ2/λ1x,y). 下面给出本文证明过程中所需的引理.
引理1 设1/p+1/q=1 (p>1),a, b, λ∈R,λ1λ2>0,G(u, v)是λ阶齐次非负函数,K(x, y)=G(xλ1, yλ2),aq/λ1+bp/λ2=1/λ1+1/λ2+ λ,记
W1(b,p)=∫+∞0K(1,t)t−bp dt,W2(a,q)=∫+∞0K(t,1)t−aq dt, 则W1(b, p)/λ1=W2(a, q)/λ2,且
ω1(b,p,x)=∫+∞0K(x,y)y−bp dy=xλ1(λ−bp/λ2+1/λ2)W1(b,p),ω2(a,q,y)=∫+∞0K(x,y)x−aq dx=yλ2(λ−aq/λ1+1/λ1)W2(a,q). 证明 由aq/λ1+bp/λ2=1/λ1+1/λ2+ λ,可得- λ1λ + λ1bp/λ2-λ1/λ2-1=-aq. 则有
W1(b,p)=∫+∞0tλ2λK(t−λ2/λ1,1)t−bp dt= λ1λ2∫+∞0K(u,1)u−λ1λ+λ1bp/λ2−λ1/λ2−1 du= λ1λ2∫+∞0K(u,1)u−aq du=λ1λ2W2(a,q), 故W1(b, p)/λ1=W2(a, q)/λ2.
作变换y=xλ1/λ2t,有
ω1(b,p,x)=∫+∞0xλ1λK(1,x−λ1/λ2y)y−bp dy= xλ1(λ−bp/λ2+1/λ2)∫+∞0K(1,t)t−bp dt= xλ1(λ−bp/λ2+1/λ2)W1(b,p). 同理可证ω2(a, q, y)=yλ2(λ-aq/λ1+1/λ1)W2(a, q). 证毕.
2. 适配参数的充分必要条件
定理1 设1/p+1/q=1 (p>1),a, b, λ∈R,λ1λ2>0,G(u, v)是λ阶齐次非负可测函数,K(x, y)=G(xλ1, yλ2),W1(b, p)与W2(a, q)如引理1所定义. 那么
(1) 若α=λ1[λ+1λ2+p(aλ1−bλ2)],β=λ2[λ+1λ1+p(bλ2−aλ1)], 则有
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy⩽W1/p1(b,p)W1/q2(a,q)‖f‖p,α‖g‖q,β, (2) 其中, f(x)∈Lαp(0,+∞),g(y)∈Lβq(0,+∞).
(2) 式(2)中的常数因子W11/p(b, p)W21/q(a, q)是最佳的,当且仅当aq/λ1+bp/λ2=1/λ1+1/λ2+ λ,W1(b, p)和W2(a, q)都收敛. 当aq/λ1+bp/λ2=1/λ1+1/λ2+ λ时,式(2)化为
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy⩽ W0|λ1|1/q|λ2|1/p‖f‖p,apq−1‖g‖q,bpq−1, (3) 其中, W0=|λ1|W2(a, q)= |λ2|W1(b, p).
证明 (i)选择a、b为搭配参数. 根据Hölder不等式和引理1,利用权系数方法,有
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy=∫+∞0∫+∞0(xaybf(x))(ybxag(y))K(x,y)dxdy⩽(∫+∞0∫+∞0xapybpfp(x)K(x,y)dxdy)1/p×(∫+∞0∫+∞0ybqxaqgq(y)K(x,y)dxdy)1/q=(∫+∞0xapfp(x)ω1(b,p,x)dx)1/p×(∫+∞0ybqgq(y)ω2(a,q,y)dy)1/q=W1/p1(b,p)W1/q2(a,q)×(∫+∞0xap+λ1(λ−bp/λ2+1/λ2)fp(x)dx)1/p×(∫+∞0ybq+λ2(λ−aq/λ1+1/λ1)gq(y)dx)1/q=W1/p1(b,p)W1/q2(a,q)‖f‖p,α‖g‖q,β, 故式(2)成立.
(ii) 充分性:设aq/λ1+bp/λ2=1/λ1+1/λ2+ λ,W1(b, p)和W2(a, q)收敛. 由引理1,有W1(b, p)/λ1=W2(a, q)/λ2,故
W1/p1(b,p)W1/q2(a,q)=(λ2λ1)1/qW1(b,p)=W0|λ1|1/q|λ2|1/p, 且α=apq-1,β=bpq-1,于是式(2)可化为式(3).
设式(3)的最佳常数因子为M0,则M0≤W0/(|λ11/q|λ2|1/p),且用M0取代式(3)中的常数因子后,式(3)仍然成立.
取充分小的ε>0及δ>0,令
f(x)={x(−apq−|λ1|ε)/p(x⩾1),0(0<x<1);g(y)={y(−bpq−|λ2|ε)/q(y⩾δ),0(0<y<δ). 则
‖f‖p,apq−1‖g‖q,bpq−1=(∫+∞1x−1−|λ1|εdx)1/p(∫+∞δy−1−|λ2|εdy)1/q=(1|λ1ε|)1/p(1|λ2|εδ−|λ2|ε)1/q=1ε|λ1|1/p|λ2|1/qδ−|λ2|ε/q,∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy=∫+∞1x−aq−|λ1|ε/p(∫+∞δy−bp−|λ2|ε/qK(x,y)dy)dx=∫+∞1x−aq−|λ1|ε/p+λλ1(∫+∞δy−bp−|λ2|ε/qK(1,x−λ1/λ2y)dy)dx=∫+∞1x−1−|λ1|ε(∫+∞x−λ1/λ2δt−bp−|λ2|ε/qK(1,t)dt)dx⩾∫+∞1x−1−|λ1|ε(∫+∞δt−bp−|λ2|ε/qK(1,t)dt)dx=1|λ1|ε∫+∞δt−bp−|λ2|ε/qK(1,t)dt. 于是
1|λ1|∫+∞δt−bp−|λ2|ε/qK(1,t)dt⩽M0|λ1|1/p|λ2|1/qδ−|λ2|ε/q. 先令ε→0+,再令δ→0+,得
W1(b,p)=∫+∞0t−bpK(1,t)dt⩽M0|λ1|1/p|λ2|1/q. 再根据引理1,可得到W0/(|λ1|1/q|λ2|1/p)≤M0. 所以式(3)的最佳常数因子M0=W0/(|λ1|1/q|λ2|1/p).
必要性:设式(2)的常数因子W11/p(b, p)W21/q(a, q)是最佳的,则W1(b, p)和W2(a, q)是收敛的. 下证aq/λ1+bp/λ2=1/λ1+1/λ2+ λ.
记1λ1aq+1λ2bp−(1λ1+1λ2+λ)=c,a1=a−λ1cpq,b1=b−λ2cpq,则
α=λ1[λ+1λ2+p(a1λ1−b1λ2)]=α1,β=λ2[λ+1λ1+p(b1λ2−a1λ1)]=β1,W2(a,q)=∫+∞0K(t,1)t−aq dt=λ2λ1∫+∞0K(1,t)t−bp+λ2c dt. 于是可知式(2)等价于
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy⩽W1/p1(b,p)(λ2λ1∫+∞0K(1,t)t−bp+λ2c dt)1/q‖f‖p,α1‖g‖q,β1. 又经计算有a1q/λ1+b1p/λ2=1/λ1+1/λ2+ λ,α1=a1pq-1,β1=b1pq-1,故式(2)进一步等价于
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy⩽W1/p1(b,p)(λ2λ1∫+∞0K(1,t)t−bp+λ2c dt)1/q×‖f‖p,a1pq−1‖g‖q,b1pq−1. (4) 根据假设,式(4)的最佳常数因子是W11/p(b, p)×(λ2λ1∫+∞0K(1,t)t−bp+λ2cdt)1/q. 又由1λ1a1q+1λ2b1p=1λ1+1λ2+λ及充分性的证明,可知式(4)的最佳常数因子为
1|λ1|1/q|λ2|1/p(|λ2|∫+∞0K(1,t)t−b1p dt)=(λ2λ1)1/q∫+∞0K(1,t)t−bp+λ2c/q dt 于是得到
∫+∞0K(1,t)t−bp+λ2c/q dt=W1/p1(b,p)(∫+∞0K(1,t)t−bp+λ2c dt)1/q. (5) 对于1和tλ2c/q,应用Hölder不等式,有
∫+∞0K(1,t)t−bp+λ2c/q dt=∫+∞0tλ2c/qK(1,t)t−bp dt⩽(∫+∞01pK(1,t)t−bp dt)1/p(∫+∞0tλ2cK(1,t)t−bp dt)1/q=W1/p1(b,p)(∫+∞0K(1,t)t−bp+λ2c dt)1/q. (6) 根据式(5),可知式(6)取等号. 又根据Hölder不等式取等号的条件,可得tλ2c/q=常数,故c=0,即aq/λ1+bp/λ2=1/λ1+1/λ2+ λ1. 证毕.
注1 定理1表明: 当且仅当aq/λ1+bp/λ2=1/λ1+1/λ2+ λ时,搭配参数a、b是适配参数. 因此,只要选取a、b满足aq/λ1+bp/λ2=1/λ1+1/λ2+ λ,就可以得到各种各样的具有最佳常数因子的Hilbert型积分不等式.
推论1 设1/p+1/q=1 (p>1),λ1λ2>0,λ >0,1/r+1/s=1 (r>1),α=p(1- λλ1/r)-1,β=q(1- λλ2/s)-1,则
∫+∞0∫+∞0f(x)g(y)(xλ1+yλ2)λdxdy⩽1|λ1|1/q|λ2|1/p B(λr,λs)‖f‖p,α‖g‖q,β, (7) 其中的常数因子是最佳的,f(x)∈Lpα(0, +∞),g(y)∈Lqβ(0, +∞).
证明 记K(x, y)=G(xλ1, yλ2)=1/(xλ1+yλ2)λ,则G(u, v)是-λ阶齐次非负函数. 选取搭配参数a=1q(1−λλ1r),b=1p(1−λλ2s), 可得
1λ1aq+1λ2bp=1λ1(1−λλ1r)+1λ2(1−λλ2s)=1λ1+1λ2−λ, 故a、b是适配参数. 又因为apq-1=p(1- λλ1/r)-1=α,bpq-1=q(1- λλ2/s)-1=β,且
W0=|λ2|W1(b,p)=|λ2|∫+∞01(1+tλ2)λtλλ2/s−1 dt=∫+∞01(1+u)λuλ/s−1 du=B(λs,λ−λs)=B(λr,λs). 根据定理1,式(7)成立,且其常数因子是最佳的. 证毕.
3. 在求积分算子范数中的应用
根据Hilbert型不等式与相应积分算子的关系理论,由定理1可得如下定理.
定理2 设1/p+1/q=1 (p>1),a, b, λ ∈ R,λ1λ2>0,α=apq-1,β=bpq-1,G(u, v)是λ阶齐次非负可测函数,K(x, y)=G(xλ1, yλ2),且
W1(b,p)=∫+∞0K(1,t)t−bp dt<+∞,W2(a,q)=∫+∞0K(t,1)t−aq dt<+∞, 则当aq/λ1+bp/λ2=1/λ1+1/λ2+ λ时,积分算子T:
T(f)(y)=∫+∞0K(x,y)f(x)dx,f(x)∈Lαp(0,+∞) 是从Lpα(0, +∞)到Lpβ(1-p)(0, +∞)的有界算子,且T的算子范数为
‖T‖=|λ2|W1(b,p)|λ1|1/q|λ2|1/p=(λ2λ1)1/q∫+∞0K(1,t)t−bp dt. 推论2 设1/p+1/q=1 (p>1),λ1λ2>0,-1 < λ < min{1±4/λ1, 1±4/λ2},α=p[1+ λ1(λ -1)/2]-1,β=p[1+ λ2(λ -1)/2]-1,则积分算子T:
T(f)(y)=∫+∞0|xλ1−yλ2|λmax{xλ1,yλ2}f(x)dx,f(x)∈Lαp(0,+∞) 是从Lpα(0, +∞)到Lpβ(1-p)(0, +∞)的有界算子,且T的算子范数为
‖T‖=1|λ1|1/q|λ2|1/p[ B(λ+1,1−λ2−2λ2)+ B(λ+1,1−λ2+2λ2)]. 证明 记K(x, y)=G(xλ1, yλ2)= |xλ1-yλ2|λ/max{xλ1, yλ2},则G(u, v)是λ -1阶齐次函数. 取a= 1q[1+λ12(λ−1)],b=1p[1+λ22(λ−1)],则
1λ1aq+1λ2bp=1λ1[1+λ12(λ−1)]+1λ2[1+λ22(λ−1)]= 1λ1+1λ2+λ−1, 故a、b是适配参数. 又apq−1=p[1+λ12(λ−1)]−1=α,bpq−1=q[1+λ22(λ−1)]−1=β. 则
(λ2λ1)1/q∫+∞0K(1,t)t−bp dt=(λ2λ1)1/q∫+∞0|1−tλ2|λmax{1,tλ2}t−[1+λ2(λ−1)/2]dt=1|λ1|1/q|λ2|1/p[ B(λ+1,1−λ2−2λ2)+B(λ+1,1−λ2+2λ2)]<+∞. 根据定理2,知推论2成立. 证毕.
推论3 设1/p+1/q=1 (p>1),1/r+1/s=1 (r>1),λ1λ2>0,α=p(1- λ1/r)-1,β=q(1- λ2/s)-1. 则积分算子T:
T(f)(y)=∫+∞0ln(xλ1/yλ2)xλ1−yλ2f(x)dx,f(x)∈Lαp(0,+∞) 是从Lpα(0, +∞)到Lpβ(1-p)(0, +∞)的有界算子,且T的算子范数为
‖T‖=1|λ1|1/q|λ2|1/p[ζ(2,1r)+ζ(2,1s)], 其中ζ(t, a)是Riemann函数.
证明 记
K(x,y)=G(xλ1,yλ2)=ln(xλ1/yλ2)xλ1−yλ2, 则G(u, v)是-1阶齐次非负函数.
取搭配参数a=1q(1−λ1r),b=1p(1−λ2s),则
1λ1aq+1λ2bp=1λ1(1−λ1r)+1λ2(1−λ2s)=1λ1+1λ2−1, 故a、b是适配参数. 又apq-1=p(1- λ1/r)-1=α,bpq-1=q(1- λ2/s)-1=β,且
(λ2λ1)1/q∫+∞0K(1,t)t−bp dt=(λ2λ1)1/q∫+∞0ln(t−λ2)1−tλ2tλ2/s−1 dt=1|λ1|1/q|λ2|1/p[ζ(2,1r)+ζ(2,1s)]<+∞ 根据定理2,知推论3成立. 证毕.
-
-
[1] 杨地, 史潇凡, 张冀杰, 等. 光热材料在海水淡化领域的近期研究进展与展望[J]. 化学学报, 2023, 81(08): 1052-1063. YANG D, SHI X F, ZHANG J J, et al. Recent research progress and prospect of photothermal materials in seawater desalination[J]. Acta Chimica Sinica, 2023, 81(8): 1052-1063.
[2] 赵春波, 赵嵘, 戚剑飞, 等. 面向双碳目标的水淡技术: 生物质碳用于界面太阳能光蒸汽转化技术的研究进展[J]. 材料导报, 2023, 37(12): 5-17. ZHAO C B, ZHAO R, QI J F, et al. Utilizing biochars in interfacial solar-vapor conversion and seawater desalination: potential value for 'Double Carbon' goals and state of the art[J]. Materials Reports, 2023, 37(12): 5-17.
[3] ZHOU L, LI X, NI G W, et al. The revival of thermal utilization from the sun: interfacial solar vapor generation[J]. National Science Review, 2019, 6(3): 562-578. doi: 10.1093/nsr/nwz030
[4] GUO Y, ZHAO F, ZHOU X, et al. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation[J]. Nano Letters, 2019, 19(4): 2530-2536. doi: 10.1021/acs.nanolett.9b00252
[5] LIU H, ZHANG X, HONG Z, et al. A bioinspired capillary driven pump for solar vapor generation[J]. Nano Energy, 2017, 42: 115-121. doi: 10.1016/j.nanoen.2017.10.039
[6] XU N, HU X, XU, et al. Mushrooms as efficient solar steam-generation devices[J]. Advanced Materials, 2017, 29(28): 1606762/1-5.
[7] ZHU M, YU J, MA C, et al. Carbonized daikon for high efficient solar steam generation[J]. Solar Energy Materials and Solar Cells, 2019, 191: 83-90. doi: 10.1016/j.solmat.2018.11.015
[8] LI Z, WANG C, LEI T, et al. Arched bamboo charcoal as interfacial solar steam generation integrative device with enhanced water purification capacity[J]. Advanced Sustainable Systems, 2019, 3(4): 1800144/1-10.
[9] SUN P, ZHANG W, ZADA I, et al. 3D-structured carbonized sunflower heads for improved energy efficiency in solar steam generation[J]. ACS Applied Materials & Interfaces, 2019, 12(2): 2171-2179.
[10] XU K, WANG C, LI Z, et al. Salt mitigation strategies of solar-driven interfacial desalination[J]. Advanced Functional Materials, 2021, 31(8): 2007855/1-9.
[11] KUANG Y, CHEN C, HE S, et al. A high-performance self-regenerating solar evaporator for continuous water desalination[J]. Advanced materials, 2019, 31(23): 1900498/1-8.
[12] ZHOU J, GU Y, LIU P, et al. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions[J]. Advanced Functional Materials, 2019, 29(50): 1903255/1-20.
[13] LI X, LI J, LU J, et al. Enhancement of interfacial solar vapor generation by environmental energy[J]. Joule, 2018, 2(7): 1331-1338. doi: 10.1016/j.joule.2018.04.004
[14] WANG Y, WU X, GAO T, et al. Same materials, bigger output: a reversibly transformable 2D-3D photothermal evaporator for highly efficient solar steam generation[J]. Nano Energy, 2021, 79: 105477/1-9.
[15] WU X, WU Z, WANG Y, et al. All-cold evaporation under one sun with zero energy loss by using a heatsink inspired solar evaporator[J]. Advanced Science, 2021, 8(7): 2002501/1-12.
[16] WANG Y, WU X, YANG X, et al. Reversing heat conduction loss: extracting energy from bulk water to enhance solar steam generation[J]. Nano Energy, 2020, 78: 105269/1-10.
[17] MA M, CAO X, XU K, et al. Engineering a superhydrophilic TiC/C absorber with multiscale pore network for stable and efficient solar evaporation of high-salinity brine[J]. Materials Today Energy, 2022, 26: 101009/1-11.
[18] WANG W, TIAN Z, HUAN X, et al. Carbonized sweet potato-based evaporator for highly efficient solar vapor generation[J]. Energy Technology, 2023: 2300671/1-8.
[19] ZHOU L, TAN Y, WANG J, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nature Photonics, 2016, 10(6): 393-398. doi: 10.1038/nphoton.2016.75
-
期刊类型引用(1)
1. 肖世伟,李承凯,杨美娜,冯祥虎,孙国萃,杜军. MIPS指令集的流水线CPU模型机设计. 单片机与嵌入式系统应用. 2023(02): 15-18 . 百度学术
其他类型引用(1)