Valuation of Continuous-installment Shout Option
-
摘要: 为了研究连续支付喊价式分期付款期权的定价问题,文章推导了期权价格满足的抛物型变分不等式,并证明了其障碍函数在部分定解区域上存在显式表达式。该变分不等式有2条自由边界:一条是最佳喊价边界,另一条是最佳弃权边界。文章首先通过自由边界的定性分析讨论了这2条自由边界的位置和性质,然后利用惩罚方法求解变分不等式,最后给出不同参数下的数值例子。结果表明:如果无风险利率大于股息收益率,那么当时间远离到期日,最佳喊价边界趋向无穷大;随着到期日的逼近,2条自由边界均趋向于敲定价格;喊价权利和分期付款率均对自由边界有着显著的影响。Abstract: In order to study the pricing problem of continuous-installment options, a parabolic variational inequality that the option price satisfies is derived, and the existence of an explicit expression for its barrier function in a subset of the solution domain is proved. The variational inequality has two free boundaries, one is the optimal shouting boundary, and the other is the optimal stopping boundary. The location and properties of these two free boundaries are discussed through qualitative analysis, and the penalty method is used to solve the variational inequalities so as to give numerical examples with different parameters. The results show that if the risk-free interest rate is greater than the dividend yield, the optimal shouting boundary tends to infinity when the time is far from the maturity date; but as the maturity date approaches, both free boundaries tend to strike prices. In addition, both the shouting right and the installment rate have a significant impact on the free boundaries.
-
-
[1] DAI M, KWOK Y K, WU L X. Options with multiple reset rights[J]. International Journal of Theoretical and Applied Finance, 2003, 6(6): 637-653. doi: 10.1142/S0219024903002146
[2] DAI M, KWOK Y K, WU L. Optimal shouting policies of options with strike reset right[J]. Mathematical Finance, 2004, 14(3): 383-401. doi: 10.1111/j.0960-1627.2004.00196.x
[3] GOARD J. Exact solutions for a strike reset put option and a shout call option[J]. Mathematical and Computer Modelling, 2012, 55(5/6): 1787-1797.
[4] YANG Z, YI F H. Valuation of European installment put option: variational inequality approach[J]. Communications in Contemporary Mathematics, 2009, 11: 279-307. doi: 10.1142/S0219199709003363
[5] YANG Z, YI F H, WANG X H. A variational inequality arising from European installment call options pricing[J]. Siam Journal on Mathematical Analysis, 2008, 40(1): 306-326. doi: 10.1137/060670353
[6] CIURLIA P. Valuation of European continuous-installment options[J]. Computers and Mathematics with Applications, 2011, 62(6): 2518-2534. doi: 10.1016/j.camwa.2011.04.073
[7] JEON J, KIM G. Pricing European continuous-installment strangle options[J]. North American Journal of Econo-mics and Finance, 2019, 50: 101049/1-8.
[8] 岑苑君. 连续型美式分期付款看跌期权[J]. 华东师范大学学报(自然科学版), 2019(3): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HDSZ201903004.htm CEN Y J. Valuation of American continuous-installment put options[J]. Journal of East China Normal University(Natural Science), 2019(3): 24-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HDSZ201903004.htm
[9] CIURLIA P, ROKO I. Valuation of American continuous-installment options[J]. Computational Economics, 2005, 1: 143-165.
[10] 高扬, 梁进. 连续支付美式分期付款期权的计算[J]. 哈尔滨工程大学学报, 2008, 29(12): 1352-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200812019.htm GAO Y, LIANG J. Valuation of American continuous-installment options[J]. Journal of Harbin Engineering University, 2008, 29(12): 1352-1355. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG200812019.htm
[11] YANG Z, YI F H. A variational inequality arising from American installment call options pricing[J]. Journal of Mathematical Analysis and Applications, 2009, 357(1): 54-68. doi: 10.1016/j.jmaa.2009.03.045
[12] JEON J, CHOI S Y, YOON J H. Analytic valuation of European continuous-installment barrier options[J]. Journal of Computational and Applied Mathematics, 2020, 363: 392-412. doi: 10.1016/j.cam.2019.06.021
[13] 陈晓珊, 曹利敏, 易法槐. 一种新型美式期权的自由边界问题[J]. 华南师范大学学报(自然科学版), 2017, 49(4): 95-101. http://journal-n.scnu.edu.cn/article/id/4130 CHEN X S, CAO L M, YI F H. Free boundary problem of a new type of American option[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(4): 95-101. http://journal-n.scnu.edu.cn/article/id/4130
[14] DAI M, KWOK Y K, YOU H. Intensity-based framework and penalty formulation of optimal stopping problems[J]. Journal of Economic Dynamics & Control, 2007, 31: 3860-3880.
[15] FORSYTH P A, VETZAL K R. Quadratic convergence for valuing American options using a penalty method[J]. SIAM Journal on Scientific Computation, 2002, 23: 2096-2123.
-
期刊类型引用(3)
1. 苏丹,明银安,陈琳,李阳,文志潘,王营茹. 喹诺酮类抗生素的检测和吸附处理研究进展. 净水技术. 2023(05): 5-12+177 . 百度学术
2. 陈金垒,王嘉豪,黄雪君,苏善煜,龚佳昕. 纳米矿晶对氧氟沙星的吸附性能研究. 山东化工. 2022(11): 210-212 . 百度学术
3. 杜悦矜,曾丽璇,黄家全,李美慧. 天然沸石对水中左氧氟沙星的吸附及其影响因素. 华南师范大学学报(自然科学版). 2020(06): 39-44 . 百度学术
其他类型引用(5)