应变诱导外延Ba0.6Sr0.4TiO3薄膜铁电介电性能的频率依赖特性

张宪贵, 宋建民, 康艳霜, 史孟飞

张宪贵, 宋建民, 康艳霜, 史孟飞. 应变诱导外延Ba0.6Sr0.4TiO3薄膜铁电介电性能的频率依赖特性[J]. 华南师范大学学报(自然科学版), 2022, 54(4): 1-6. DOI: 10.6054/j.jscnun.2022051
引用本文: 张宪贵, 宋建民, 康艳霜, 史孟飞. 应变诱导外延Ba0.6Sr0.4TiO3薄膜铁电介电性能的频率依赖特性[J]. 华南师范大学学报(自然科学版), 2022, 54(4): 1-6. DOI: 10.6054/j.jscnun.2022051
ZHANG Xiangui, SONG Jianmin, KANG Yanshuang, SHI Mengfei. The Frequency-dependent Ferroelectric and Dielectric Properties of Strain-induced Epitaxial Ba0.6Sr0.4TiO3 Thin Films[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 1-6. DOI: 10.6054/j.jscnun.2022051
Citation: ZHANG Xiangui, SONG Jianmin, KANG Yanshuang, SHI Mengfei. The Frequency-dependent Ferroelectric and Dielectric Properties of Strain-induced Epitaxial Ba0.6Sr0.4TiO3 Thin Films[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(4): 1-6. DOI: 10.6054/j.jscnun.2022051

应变诱导外延Ba0.6Sr0.4TiO3薄膜铁电介电性能的频率依赖特性

基金项目: 

河北省教育厅青年基金项目 QN2018001

河北省创新创业专项 S202110086039

河北农业大学一流本科课程专项 2021-BHKC-10

详细信息
    通讯作者:

    张宪贵,Email: lxzhxg@hebau.edu.cn

  • 中图分类号: O469

The Frequency-dependent Ferroelectric and Dielectric Properties of Strain-induced Epitaxial Ba0.6Sr0.4TiO3 Thin Films

  • 摘要: 基于修正的Landau-Devonshire唯象理论和Landau-Khalatnikov方程,研究了不同失配应变下外延Ba0.6Sr0.4TiO3薄膜相稳定性和频率依赖的铁电介电性能。结果表明:室温下铁电c相、正交aa相和顺电相为稳态相且均为二级相变;在0.1 kHz的外加电场频率下,压应变增加了c相的面外剩余极化强度(Pr)和矫顽场(Ec),而拉应变增加了aa相的面内剩余极化强度和矫顽场。此外,随着频率的增加,相界处PrEc均增加,介电常数呈先快速后缓慢的下降趋势,最大调谐率逐渐减小且相应失配应变逐渐趋于零,这主要归因于频率的增加导致相变温度(ΔTc)升高。进一步计算显示,面外的失配应变移动、调谐率降低和ΔTc分别为0.017%、10.6%、7.3 ℃,其与面内结果(0.019%,9.7%,7.7 ℃)相近。
    Abstract: Phase stability and frequency-dependent ferroelectric and dielectric properties of epitaxial Ba0.6Sr0.4TiO3 thin films under different misfit strains were investigated using a modified Landau-Devonshire phenomenological theory combined with Landau-Khalatnikov equation. The phase diagram analysis indicates that ferroelectric tetragonal (c), orthogonal (aa) and paraelectric phases are stable at room temperature and all phase transitions are of second order. The compressive misfit strain increases out-of-plane remnant polarization (Pr) and coercive field (Ec) in c phase while the tensile misfit strain augments in-plane Pr and Ec in aa phase at an electric field frequency of 0.1 kHz. Moreover, it is found that both polarization and coercive field increase with increasing frequency while the dielectric constant decreases rapidly first and then slowly. The maximum tunability decreases and the corresponding misfit strain gradually approaches zero, which is attributed to the enhancement of phase transition temperature (ΔTc). The further calculation results reveal that the shift of misfit strain, decrease in tunability and ΔTc are 0.017%, 10.6% and 7.3 ℃ respectively in the out-of-plane case, which are comparable to 0.019%, 9.7% and 7.7 ℃ respectively for the in-plane case.
  • 图  1   相图

    Figure  1.   The phase diagram

    图  2   0.1 kHz电滞回线和介电曲线应变依赖性

    Figure  2.   The misfit strain-dependent hysteresis loops and dielectric curves at 0.1 kHz

    图  3   相界处电滞回线、零场介电常数和矫顽场频率依赖性

    Figure  3.   The frequency-dependent hysteresis loops, zero-field dielectric constants and coercive fields at phase boundaries

    图  4   不同应变调谐率和零场介电常数的频率依赖性

    Figure  4.   The frequency-dependent tunability and zero-field dielectric constant at different misfit strains

    表  1   BST60/40薄膜计算参数

    Table  1   The calculation parameters for BST60/40 film

    参数
    T/℃ 25
    Tc/℃ 5
    C/℃ 1.22×106
    a11/(C-2·m5·F) (2.16T+462)×106
    a12/(C-2·m5·F) 7.98×108
    S11/(m2·N-1) 5.12×10-12
    S12/(m2·N-1) -1.65×10-12
    S44/(m2·N-1) 5.86×10-12
    Q11/(m4·C-2) 0.1
    Q12/(m4·C-2) -0.034
    Q44/(m4·C-2) 0.029
    下载: 导出CSV
  • [1]

    NOGUCHI Y J, MAKI H S, KITANAKA Y K, et al. Control of misfit strain in ferroelectric BaTiO3 thin-film capacitors with SrRuO3-based electrodes on (Ba, Sr)TiO3-buffered SrTiO3 substrates[J]. Applied Physics Letters, 2018, 113(1): 012903/1-5.

    [2]

    KISELEV D A, AFANASIEV M S, LEVASHOV S A, et al. Thickness dependence of electrical and piezoelectric properties of ferroelectric Ba0.8Sr0.2TiO3 thin films[J]. Thin Solid Films, 2016, 619(30): 214-219.

    [3]

    ZEINAR L, SALG P, WALK D, et al. Matching conflicting oxidation conditions and strain accommodation in perovskite epitaxial thin-film ferroelectric varactors[J]. Journal of Applied Physics, 2020, 128(21): 214104/1-4.

    [4]

    YAMADA T K, MATSUO S G, KAMO T F, et al. Experimental study of effect of strain on electrocaloric effect in (001)-epitaxial (Ba, Sr)TiO3 thin films[J]. Japanese Journal of Applied Physics, 2017, 56: 10PF15/1-5.

    [5] 张宪贵, 那木拉, 宋建民, 等. 退极化场对Ba0.5Sr0.5TiO3外延薄膜的铁电和介电性能的影响[J]. 华南师范大学学报(自然科学版), 2022, 54(2): 7-12. doi: 10.6054/j.jscnun.2022019

    ZHANG X G, NA M L, SONG J M, et al. Effect of depolarization field on ferroelectric and dielectric properties of Ba0.5Sr0.5TiO3 epitaxial thin films[J]. Journal of South China Normal University(Natural Science Edition), 2022, 54(2): 7-14. doi: 10.6054/j.jscnun.2022019

    [6] 陈文烁, 孟耀勇, 顾凤龙. 钛酸锶钡拉曼光谱的理论计算与实验研究[J]. 华南师范大学学报(自然科学版), 2019, 51(6): 18-23. doi: 10.6054/j.jscnun.2019098

    CHEN W S, MENG Y Y, GU F L. Theoretical and experimental studies of raman spectroscopy of barium strontium titanate[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(6): 18-23. doi: 10.6054/j.jscnun.2019098

    [7]

    COLE M W, NGO E M, HUBBARD C, et al. Enhanced dielectric properties from barium strontium titanate films with strontium titanate buffer layers[J]. Journal of Applied Physics, 2013, 114(16): 164107/1-10.

    [8]

    ZHU X H, MENG Q D, YONG L P, et al. Influence of oxy-gen pressure on the structural and dielectric properties of laser-ablated Ba0.5Sr0.5TiO3 thin films epitaxially grown on (001) MgO for microwave phase shifters[J]. Journal of Physics D: Applied Physics, 2006, 39(10): 2282-2288. doi: 10.1088/0022-3727/39/10/043

    [9]

    BAN Z G, ALPAY S P. Phase diagrams and dielectric response of epitaxial barium strontium titanate films: a theoretical analysis[J]. Journal of Applied Physics, 2002, 91(11): 9288-9296. doi: 10.1063/1.1473675

    [10]

    CARLSON C M, RIVKIN T, PARILLA P A, et al. Large dielectric constant Ba0.4Sr0.6TiO3 thin films for high-performance microwave phase shifters[J]. Applied Physics Letters, 2000, 76(14): 1920-1922. doi: 10.1063/1.126212

    [11]

    CHANG W, GILMORE C M, KIM W J, et al. Influence of strain on microwave dielectric properties of (Ba, Sr)TiO3 thin films[J]. Journal of Applied Physics, 2000, 87(6): 3044-3049. doi: 10.1063/1.372297

    [12]

    BAN Z G, ALPAY S P. Optimization of the tunability of barium strontium titanate films via epitaxial stresses[J]. Journal of Applied Physics, 2003, 93(1): 504-511. doi: 10.1063/1.1524310

    [13]

    WANG F, MA W H. Phase stability and dielectric properties of (011) epitaxial Ba0.6Sr0.4TiO3 films[J]. Journal of Applied Physics, 2019, 125(8): 082528/1-8.

    [14]

    ZHU C, CHEN J. Phase diagram and dielectric behavior of Ba0.6Sr0.4TiO3 thin films grown on orthorhombic substrates[J]. Physics Letters A, 2007, 372(1): 81-86. doi: 10.1016/j.physleta.2007.07.013

    [15]

    WANG J, ZHANG T Y. Size effects in epitaxial ferroelectric islands and thin films[J]. Physical Review B, 2006, 73(14): 144107/1-11.

    [16]

    RICHMAN M S, RULIS P, CARUSO A N, et al. Ferroelectric system dynamics simulated by a second-order Landau model[J]. Journal of Applied Physics, 2017, 122(9): 094101/1-12.

    [17]

    LIU N, SU Y. A comparative study of the phase-field approach in modeling the frequency-dependent characteristics of ferroelectric materials[J]. Acta Mechanica, 2016, 227(9): 2671-2682. doi: 10.1007/s00707-016-1638-x

    [18]

    SINGH S K, MARUYAMA K, ISHIWARA H. Frequency-dependent polarization in BiFeO3 thin films[J]. Integrated Ferroelectrics, 2008, 98(1): 83-89. doi: 10.1080/10584580802092381

    [19]

    ZHU X H, YONG L P, TIAN H F, et al. The origin of the weak ferroelectric-like hysteresis effect in paraelectric Ba0.5Sr0.5TiO3 Thin films grown epitaxially on LaAlO3[J]. Journal of Physics: Condensed Matter, 2006, 18(19): 4709-4718. doi: 10.1088/0953-8984/18/19/022

    [20]

    PERTSEV N A, ZEMBILGOTOV A G, TAGANTSEV A K, et al. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films[J]. Physical Review Letters, 1998, 80(9): 1988-1991. doi: 10.1103/PhysRevLett.80.1988

    [21]

    LIU B T, ZHAO J W, LI X H, et al. Enhanced dielectric constant and fatigue-resistance of PbZr0.4Ti0.6O3 capacitor with magnetic intermetallic FePt top electrode[J]. Applied Physics Letters, 2010, 96(25): 252904/1-3.

    [22]

    SHARMA A, BAN Z G, ALPAY S P, et al. Pyroelectric response of ferroelectric thin films[J]. Journal of Applied Physics, 2001, 95(7): 3618-3625.

    [23]

    KHASSAF H, KHAKPASH N, SUN F, et al. Strain engineered barium strontium titanate for tunable thin film resonators[J]. Applied Physics Letters, 2014, 104(20): 202902/1-5.

    [24]

    WANG D Y, WANG Y, ZHOU X Y, et al. Enhanced in-plane ferroelectricity in Ba0.7Sr0.3TiO3 thin films grown on MgO (001) single-crystal substrate[J]. Applied Physics Letters, 2005, 86(21): 212904/1-3.

    [25]

    ONG L H, MUSLEH A, ZEKS T, et al. Model in switching phenomena of ferroelectric films[J]. Ferroelectrics, 2009, 380(1): 150-159. doi: 10.1080/00150190902877163

    [26]

    CUI L, CUI H Y, WU C M, et al. Dynamic properties of dielectric susceptibility in ferroelectric thin films[J]. Surface Review and Letters, 2016, 23(3): 1650010/1-6.

    [27]

    SAIF A A, JAMAL Z A Z, SAULI Z, et al. Frequency dependent electrical properties of ferroelectric Ba0.8Sr0.2TiO3 thin film[J]. Materials Science, 2011, 17(2): 186-190.

    [28]

    QIAO L, BI X F. Microstructural orientation, strain state and diffusive phase transition of pure argon sputtered BaTiO3 film[J]. Journal of Physics D: Applied Physics, 2009, 42: 175508/1-7.

    [29]

    PARK K C, CHO J H. Electric field dependence of ferroelectric phase transition in epitaxial SrTiO3 films on SrRuO3 and La0.5Sr0.5CoO3[J]. Applied Physics Letters, 2000, 77(3): 435-437. doi: 10.1063/1.127001

  • 期刊类型引用(3)

    1. 丁绮,李艳,陈伟,程辉. 三维多孔碳材料的制备及对左氧氟沙星吸附性能研究. 中国卫生检验杂志. 2023(02): 154-159+163 . 百度学术
    2. 刘自超,任亚男,周文静,刘春晖,李孜娴,杨金康,孙齐状,王龙,赵鹏. 左氧氟沙星在铁氧化物表面的吸附:动力学和pH的影响. 农业环境科学学报. 2023(02): 362-372 . 百度学术
    3. 焦天宇,王宇宁,向巧灵,张杰,张竞潇,张威,张大伟. 左氧氟沙星/壳聚糖/聚乙烯醇纳米纤维膜的制备与抑菌性能研究. 化学与粘合. 2022(01): 32-38 . 百度学术

    其他类型引用(5)

图(4)  /  表(1)
计量
  • 文章访问数:  461
  • HTML全文浏览量:  103
  • PDF下载量:  126
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-11-21
  • 网络出版日期:  2022-09-21
  • 刊出日期:  2022-08-24

目录

    /

    返回文章
    返回