我国畜禽养殖业碳排放研究进展

翟郧秋, 张芊芊, 刘芳, 应光国, 柳王荣

翟郧秋, 张芊芊, 刘芳, 应光国, 柳王荣. 我国畜禽养殖业碳排放研究进展[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 72-82. DOI: 10.6054/j.jscnun.2022046
引用本文: 翟郧秋, 张芊芊, 刘芳, 应光国, 柳王荣. 我国畜禽养殖业碳排放研究进展[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 72-82. DOI: 10.6054/j.jscnun.2022046
ZHAI Yunqiu, ZHANG Qianqian, LIU Fang, YING Guangguo, LIU Wangrong. The Progress in the Research on Carbon Emissions from Livestock and Poultry Breeding in China[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 72-82. DOI: 10.6054/j.jscnun.2022046
Citation: ZHAI Yunqiu, ZHANG Qianqian, LIU Fang, YING Guangguo, LIU Wangrong. The Progress in the Research on Carbon Emissions from Livestock and Poultry Breeding in China[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 72-82. DOI: 10.6054/j.jscnun.2022046

我国畜禽养殖业碳排放研究进展

基金项目: 

国家自然科学基金重点项目 42030703

详细信息
    通讯作者:

    刘芳,Email: liufang77@m.scnu.edu.cn

    应光国,Email: guanguo.ying@m.scnu.edu.cn

  • 中图分类号: J653

The Progress in the Research on Carbon Emissions from Livestock and Poultry Breeding in China

  • 摘要: 为了实现全球气温上升不超过2 ℃的目标,探索碳减排的措施迫在眉睫。鉴于畜禽养殖业是碳排放的一个重要来源,文章综述了国内畜禽养殖业碳排放相关的研究进展,介绍了畜禽养殖业碳排放的测算方法、时空特征、影响因素与减排措施。
    Abstract: It is urgent to explore measures for reducing carbon emissions in order to achieve the goal that the global temperature will not rise above 2 ℃. Livestock and poultry breeding is an important source of carbon emissions. The progress in the research on carbon emissions from domestic livestock and poultry breeding is summarized and the calculation method, spatio-temporal characteristics, factors and emission reduction measures regarding carbon emissions from livestock and poultry breeding are introduced.
  • 葡萄糖可以大量地从自然界中获取,是一种可再生的资源. 5-羟甲基糠醛(HMF),是一种重要的生物基平台化合物,可以通过加氢、氧化脱氢、酯化、卤化、聚合、水解等化学反应制备多种衍生物,减少人类对化石能源的依赖[1-3]. 葡萄糖转化为HMF的化学反应并不容易发生,需要较高的活化能[4-5]. 为了提高HMF的收率和选择性,反应通常在高温条件下进行. 同时,葡萄糖在转化为HMF的过程中,容易发生副反应,而且以水作为反应溶剂时,生成的HMF容易水解,产生大量的副反应产物,使得HMF的收率降低[6-7].

    过去多数研究以有机溶剂作为反应溶剂抑制HMF的水解,减少副反应的发生,例如二甲基亚砜(DMSO)[8]. ROMÁN-LESHKOV[9]提出了一种双相体系,通过在反应过程中不断将水相中的HMF萃取到有机相中,同样可以减少副反应的发生. ZHAO等[10]提出以[EMIM][Cl]离子液体作为反应溶剂,能够显著减少副反应的发生,以葡萄糖作为反应底物时,HMF的收率达到70%(100 ℃,3 h).

    通过对反应溶剂的选择,可以获得较高的HMF收率,特别是离子液体的应用有效抑制了副反应的发生,降低了反应温度. 与有机溶剂相比,离子液体更环保,目前尚未有数据证明离子液体对环境有污染. 但现实的问题是,离子液体的价格昂贵,难以与产物分离,不适合在工业上生产HMF[11-13].

    研究人员尝试在水中将葡萄糖转化为HMF,但这十分困难. 以水作为反应溶剂时,反应通常在高温、高压下进行,且通过以果糖作为反应底物获得较高的HMF收率. 例如,HANSEN等[6]报道了以HCl作为催化剂、果糖作为反应底物,200 ℃下微波水热反应60 s后,果糖的转化率为95%,HMF的选择性为55%;TUERCKE等[14]采用连续微反应器工艺,在185 ℃条件下,以HCl作为催化剂、果糖作为反应底物,果糖的转化率为71%,HMF的选择性为75%. 通常情况下,以果糖作为反应底物能够获得更高的HMF收率. 目前主流的假设:葡萄糖在转化为HMF的过程中,先异构成果糖,再以果糖为起始物进行反应. 葡萄糖转化为HMF的速率主要受葡萄糖异构成果糖速率的影响,而葡萄糖异构成果糖所需的活化能较高,导致HMF的收率和选择性较低.

    NOMA等[13]通过同位素标记法,跟踪了3-deoxyglucosone(脱氧葡萄糖酮醛)中间体的形成,证明了以TiO2和磷酸/TiO2作为催化剂时,葡萄糖先异构成活泼的烯醇中间体,然后脱水形成脱氧葡萄糖酮醛中间体,最后脱水形成HMF(Pathway D). 在这种路径下,由于不需要先异构成果糖,葡萄糖转化为HMF的收率得到了较大的提高. LANZIANO等[7]制备了hybrid-TiO2催化剂,在130 ℃下水热反应5 h催化葡萄糖转化为HMF的收率为45%,葡萄糖转化率为75%. 因此,以TiO2作为催化剂时,可以在较低的反应温度下,以廉价、易得、无污染的水作为反应溶剂,获得较高的HMF收率.

    为了进一步降低HMF的制备成本,推动HMF的工业化生产进程. 本研究以聚乙二醇200为溶剂[15],采用溶胶凝胶法[16]制备纳米TiO2溶胶催化剂,产物为交联丝状[17];以水作为反应溶剂、葡萄糖作为反应底物,利用一锅法制备HMF,采用高效液相色谱法进行检测[18],并对其工艺进行评估,寻找适合工业化生产的条件.

    主要试剂:聚乙二醇200(PEG 200)、甲酸、氘代氯仿为分析纯,乙腈为色谱纯,购于中国阿拉丁试剂(上海)有限公司;钛酸丁酯(TiO2质量分数为33%~35%)、无水乙醇、二甲基亚砜(DMSO)为分析纯,购于中国天津大茂化学试剂有限公司;钛酸乙酯(TiO2质量分数为33%~35%)为分析纯,购于中国上海麦克林生化科技有限公司;D-葡萄糖、5-羟甲基糠醛(HMF)为色谱纯,购于中国源叶生物科技(上海)有限公司.

    主要仪器:陶瓷纤维马弗炉(HG-12-4B,上海禾工科学仪器有限公司)、X射线粉末衍射仪(D8 ADVANCE,布鲁克(北京))、透射电子显微镜(JEOL JSM 2100,200 kV,日本电子)、场发射扫描电子显微镜(ZEISS Gemini 500,德国卡尔·蔡司)、纳米粒径电位分析仪(SZ-100, 英国马尔文).

    纳米TiO2溶胶的制备:将20 mL去离子水与250 mL乙醇混合,用5%的HNO3溶液调节溶液pH至1.8,记为A溶液;将10 mL钛酸丁酯与250 mL无水乙醇混合得到B溶液;在搅拌状态下,将B溶液迅速加入到A溶液中,30 min后加入200 mL水,搅拌均匀,记为纳米TiO2溶胶.

    纳米TiO2粉体的制备:将100 mL水与500 mL乙醇混合,用5%的HNO3溶液调节pH至1.8,记为A溶液;将10 mL钛酸丁酯与90 mL乙醇混合得到B溶液;将B溶液慢慢滴入A溶液中,搅拌并静置足够长的时间,形成溶胶. 将溶胶置于鼓风干燥箱中100 ℃下干燥12 h,将得到的固体研磨30 min,记为纳米TiO2粉体.

    PEG-TiO2溶胶的制备:在烘箱中加热PEG 200和钛酸乙酯至50 ℃,然后在搅拌条件下将50 mL钛酸乙酯倒入200 mL PEG 200溶剂中,快速倒入120 mL去离子水,钛酸乙酯快速水解生成氢氧化钛水合物,搅拌4 h,得到分散性良好的370 mL PEG-TiO2溶胶. 在此过程中,前期钛酸乙酯快速水解可能会导致溶胶成蜡状,但通过增加机械搅拌的力度使溶胶恢复为流体,制得PEG-TiO2溶胶性质稳定,静置不发生沉淀.

    PEG-TiO2的制备:将制得的PEG-TiO2溶胶用水蒸气蒸馏法除去溶剂,然后在烘箱中90 ℃下干燥,在马弗炉中600 ℃下反应2 h,所得产物记为PEG-TiO2.

    采用透射电子显微镜(TEM)和场发射扫描电子显微镜(SEM)对催化剂进行表征. 采用X-射线衍射仪进行表征,扫描角度从20°到90°,扫描速率为5°/min. 采用纳米粒径电位分析仪进行表征,采用粒径样品池测量平均粒径.

    纳米TiO2溶胶为无定形的结构(图 1A), 纳米TiO2为球形微粒,其粒径约10~15 nm(图 1B). 采用钛酸乙酯和PEG 200为原料制备得到PEG-TiO2溶胶,其形貌为交联丝状的无定形结构(图 1C). 根据文献[15]的研究,钛酸乙酯在PEG 200溶剂中水解时,会形成Ti—O—PEG键,使得形成的PEG-TiO2溶胶呈交联丝状结构,疏松且不易团聚. 将PEG-TiO2溶胶干燥后在600 ℃下烧结,得到的PEG-TiO2为质密的片状结构(图 1D).

    图  1  不同催化剂的TEM、SEM图
    Figure  1.  The TEM and SEM images of different catalysts

    将PEG-TiO2溶胶干燥后得到的PEG-TiO2,无明显的X射线衍射现象,说明其没有形成晶体,为无定形(图 2曲线a). 将PEG-TiO2在600 ℃下烧结得到锐钛矿型TiO2 (图 2曲线b);在700、800 ℃下烧结得到金红石型TiO2 (图 2曲线c、d). 因此,通过对干燥后的PEG-TiO2溶胶进行烧结,可以得到锐钛矿型和金红石型的TiO2,但PEG-TiO2溶胶为无定形.

    图  2  不同催化剂的XRD图谱
    注:a为干燥的PEG-TiO2溶胶,b为600 ℃下烧结得到的PEG-TiO2溶胶,c为700 ℃下烧结得到的PEG-TiO2溶胶,d为800 ℃下烧结得到的PEG-TiO2溶胶.
    Figure  2.  The XRD pattern of different catalysts

    新制纳米TiO2溶胶的平均粒径为52 nm(表 1),放置2 d后,最终纳米TiO2溶胶的平均粒径为352 nm,粒径较均匀(PdI < 0.5). PEG-TiO2溶胶的平均粒径为1 510 nm,说明其交联网状结构的聚集体使平均粒径更大,且粒径不均匀(PdI=1.000).

    表  1  催化剂的平均粒径
    Table  1.  The average particle size of catalysts
    样品 平均粒径/nm PdI
    纳米TiO2溶胶a 52 0.184
    纳米TiO2溶胶b 352 0.303
    PEG-TiO2溶胶c 1 510 1.000
    PEG-TiO2溶胶d 1 580 1.000
    注:a为新制的纳米TiO2溶胶; b为放置2 d后的纳米TiO2溶胶;c为新制的PEG-TiO2溶胶; d为放置2 d后的PEG-TiO2溶胶.
    下载: 导出CSV 
    | 显示表格

    以纳米TiO2溶胶作为催化剂时,将葡萄糖直接加入到纳米TiO2溶胶中,然后在冷凝回流条件下对体系进行加热,测得体系的温度为79 ℃. 这是由于纳米TiO2溶胶中存在大量的乙醇,使得体系的沸点较低. 取100 mL纳米TiO2溶胶,加入0.5 g葡萄糖,反应6 h后,葡萄糖转化率为93.74%,HMF收率为21.72%,HMF的选择性为23.17%. 反应12 h后,葡萄糖转化率为93.84%,HMF收率为28.58%,HMF的选择性为30.45%(图 3A). 以纳米TiO2粉体作为催化剂时,以水作为反应溶剂,同样在冷凝回流条件下对体系进行加热,测得体系的温度为100 ℃. 取3 g纳米TiO2,加入0.5 g葡萄糖,反应6 h后,葡萄糖的转化率接近100%,HMF收率为1.41%(图 3B). 因此,采用纳米TiO2溶胶作为催化剂能够有效提高HMF的收率,可以避免纳米TiO2粉体在干燥、烧结过程中的团聚,充分发挥纳米TiO2粉体的催化效果.

    图  3  纳米TiO2溶胶和粉体的催化效果
    注:A采用100 mL纳米TiO2溶胶和0.5 g葡萄糖,在79 ℃下反应; B采用100 mL水和2 g葡萄糖,在100 ℃下反应.
    Figure  3.  The catalytic effects of nano TiO2 gel and powders

    纳米TiO2溶胶具有更好的催化效果,但其纳米TiO2固含量较低,这增加了储存和运输的成本. 因此我们以PEG 200作为反应溶剂制备了PEG-TiO2溶胶,具有更高的纳米TiO2固含量. 当以PEG-TiO2溶胶为催化剂时,分别取20、30和40 mL溶胶,加入水至总体积为100 mL,加入0.5 g葡萄糖,在100 ℃温度下反应6 h. 如图 4所示,在PEG-TiO2溶胶最佳投加量(30 mL)条件下,HMF收率为17.70%,葡萄糖转化率为55.55%,对HMF的选择性为31.86%. 因此,以PEG-TiO2溶胶为催化剂对HMF具有更高的选择性,也更具有经济优势.

    图  4  催化剂体积对收率和转化率的影响
    注:以PEG-TiO2溶胶为催化剂,加水至反应液总体积为100 mL,葡萄糖为0.5 g,温度为100 ℃,反应时间为6 h.
    Figure  4.  The effect of catalyst volume on the yield and the conversion rate

    为了进一步提高HMF的收率,研究以PEG-TiO2溶胶和甲酸作为协同催化剂,研究了甲酸的体积和反应时间对HMF收率和葡萄糖转化率的影响(图 5). 最佳的甲酸体积为40 mL,此时HMF的选择性最大(43.17%,图 5A). 当甲酸体积为40 mL时,连续反应12 h研究最佳的反应时间. 反应6 h后,HMF收率为46.4%,葡萄糖转化率为79.30%,HMF的选择性为58.51%;反应12 h后,HMF收率为56.20%,葡萄糖转化率为92.00%,HMF的选择性为61.09%. 因此,在最佳条件下,反应12 h,HMF收率可达56.20%,HMF的选择性可达61.09%. 因此,以PEG-TiO2和甲酸为催化剂可以获得较高的HMF收率,同时HMF的选择性较高.

    图  5  甲酸体积和反应时间对收率和转化率的影响
    注:反应液总体积为100 mL,葡萄糖为2 g,温度为100 ℃.
    Figure  5.  The effects of the volume of formic acid and reaction time on the the yield and the conversion rate
    图  6  催化剂的循环使用次数对收率和转化率的影响
    注:采用30 mL水、30 mL PEG-TiO2溶胶、40 mL甲酸、2 g葡萄糖,在100 ℃下反应6 h.
    Figure  6.  The influence of catalyst cycle times on the yield and the conversion rate

    催化剂的循环使用可以有效降低工业生产的成本,同时减少催化剂对环境的污染. 但这需要催化剂有较强的稳定性,在多次使用后仍有较强的催化活性. PEG-TiO2溶胶的循环使用实验,以水作为反应溶剂,与甲酸协同催化,在100 ℃下反应6 h,将葡萄糖转化为HMF. PEG-TiO2溶胶采用过滤法回收,然后经3次水洗后分散在水中,即活化完成. 结果表明:PEG-TiO2溶胶在循环1次后,HMF收率由44.43%降低到18.07%,催化效果降低了50%(图 5). 这是因为腐殖质沉积在催化剂表面,使其催化效果降低,而且由于腐殖质的沉积,反应之后PEG-TiO2的颜色由白色变为黑色. 值得注意的是,PEG-TiO2溶胶在第1次使用时,对HMF的选择性为57.46%,在循环1、2、3、4次后,对HMF的选择性分别为56.66%、58.43%、63.37%、45.51%. 催化剂的循环使用过程中保持着对葡萄糖转化为HMF的较高的选择性.

    以更低成本、更高效的方法制备并研究HMF,希望实现HMF的大规模工业化生产,缓解能源危机. 纳米TiO2被广泛用作非均相催化剂,但纳米TiO2溶胶作为均相催化剂的研究尚少. 纳米TiO2溶胶作为均相催化剂可以避免纳米粒子团聚,可以提供更多的Lewis酸位点,表面效应更显著. 本研究制备了纳米TiO2溶胶、纳米TiO2粉体、PEG-TiO2溶胶等催化剂,催化葡萄糖转化为HMF;相比纳米TiO2粉体,纳米TiO2溶胶的催化效果大大提高. 同样是以水作为反应溶剂,纳米TiO2粉体催化葡萄糖转化为HMF的收率为1.41%,而纳米TiO2溶胶和PEG-TiO2溶胶催化葡萄糖转化为HMF的收率分别为28.58%和17.70%. 在最佳条件下,以PEG-TiO2溶胶作为催化剂,HMF的收率可以达到56.20%,葡萄糖转化率达92.00%,反应在水溶液中进行,添加适量的甲酸协同催化剂,在100 ℃下反应12 h. 因此,以纳米TiO2溶胶作为催化剂,可以在不添加有机溶剂以及在较低的反应温度下,获得较高的HMF收率,大大降低了HMF的制备成本. 研究结果为HMF的大规模工业化生产提供了可行方法和技术指导.

  • 图  1   我国畜牧养殖业碳排放的时序变化

    Figure  1.   The temporal change of carbon emission from animal husbandry in China

    图  2   畜禽养殖碳排放的空间分布

    Figure  2.   The spatial distribution of carbon emission from livestock and poultry breeding

  • [1]

    MA A, ZHAO H. Studies on emissions and measures of reduction and control of greenhouse gas during lifecycle of dairy products[J]. Procedia Environmental Sciences, 2012, 13: 2310-2315. doi: 10.1016/j.proenv.2012.01.220

    [2]

    SKEA J, SHUKLA P, KlLKlŞ Ş. Climate Change 2022: Mitigation of Climate Change[EB/OL]. https://www.ipcc.ch/report/ar6/wg3.

    [3]

    XUE Y N, LUAN W X, WANG H, et al. Environmental and economic benefits of carbon emission reduction in animal husbandry via the circular economy: case study of pig farming in Liaoning, China[J]. Journal of Cleaner Production, 2019, 238: 117968/1-8.

    [4]

    GUO Y X, WANG Y D, CHEN S F, et al. Inventory of spatio-temporal methane emissions from livestock and poultry farming in Beijing[J]. Sustainability, 2019, 11(14): 3858/1-11.

    [5]

    TRUONG A H, KIM M T, NGUYEN T T, et al. Methane, nitrous oxide and ammonia emissions from livestock farming in the Red River Delta, Vietnam: an inventory and projection for 2000—2030[J]. Sustainability, 2018, 10(10): 3826/1-8. https://www.preprints.org/manuscript/201809.0600/v1

    [6]

    MISIUKIEWICZ A, GAO M, FILIPIAK W, et al. Methanogens and methane production in the digestive systems of nonruminant farm animals[J]. Animal, 2021, 15(1): 100060/1-8.

    [7] 孙康泰, 王小龙, 张建民, 等. "十三五"国家重点研发计划中的畜牧兽医科技布局与评述[J]. 畜牧兽医学报, 2020, 51(1): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-XMSY202001023.htm

    SUN K T, WANG X L, ZHANG J M, et al. The distribution and review of national key research and development program in animal husbandry and veterinary medicine field during the 13th five-year period[J]. Acta Veterinaria et Zootechnica Sinica, 2020, 51(1): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-XMSY202001023.htm

    [8] 田素妍, 郑微微, 周力. 中国低碳养殖的环境库兹涅茨曲线特征及其成因分析[J]. 资源科学, 2012, 34(3): 481-493. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201203015.htm

    TIAN S Y, ZHEN W W, ZHOU L. Characteristics of environmental Kuznets curve for the low carbon breeding in China and its causes[J]. Resources Science, 2012, 34 (3): 481-493. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201203015.htm

    [9] 师帅, 李翠霞, 李媚婷. 畜牧业"碳排放"到"碳足迹"核算方法的研究进展[J]. 中国人口·资源与环境, 2017, 27(6): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201706005.htm

    SHI S, LI C X, LI M T. Review of research from carbon emissions to carbon footprint in livestockhusbandry[J]. China Population, Resources and Environment, 2017, 27(6): 36-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201706005.htm

    [10] 李鹏, 吴文昊, 郭伟. 连续监测方法在全国碳市场应用的挑战与对策[J]. 环境经济研究, 2021, 6(1): 77-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJN202101006.htm

    LI P, WU W H, GUO W. The challenges and recommendations of application of the measurement-based monitoring methodology in national carbon market[J]. Journal of Environmental Economics, 2021, 6(1): 77-92. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJN202101006.htm

    [11]

    RENAND G, MAUPETIT D. Assessing individual differences in enteric methane emission among beef heifers using the greenfeed emission monitoring system: effect of the length of testing period on precision[J]. Animal Production Science, 2016, 56(3): 218-223. doi: 10.1071/AN15429

    [12]

    JI B, ZHENG W, GATES R S, et al. Design and performance evaluation of the upgraded portable monitoring unit for air quality in animal housing[J]. Computers and Electronics in Agriculture, 2016, 124: 132-140. doi: 10.1016/j.compag.2016.03.030

    [13]

    KAIYALA K J, RAMSAY D S. Direct animal calorimetry, the underused gold standard for quantifying the fire of life[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2011, 158(3): 252-264. https://www.sciencedirect.com/science/article/pii/S1095643310001339

    [14]

    GRAINGER C, CLARKE T, MCGINN S, et al. Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques[J]. Journal of Dairy Science, 2007, 90(6): 2755-2766. doi: 10.3168/jds.2006-697

    [15]

    MADSEN J, BJERG B S, HVELPLUND T, et al. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants[J]. Livestock Science, 2010, 129: 223-227. doi: 10.1016/j.livsci.2010.01.001

    [16]

    NAVARRO-VILLA A, O'BRIEN M, LÓPEZ S, et al. Modifications of a gas production technique for assessing in vitro rumen methane production from feedstuffs[J]. Animal Feed Science and Technology, 2011, 166: 163-174. https://www.sciencedirect.com/science/article/pii/S0377840111001830

    [17] 郭鹏辉. 高寒牧区藏绵羊消化代谢与肠道甲烷排放特征[D]. 兰州: 兰州大学, 2020.

    GUO P H. The characteristics of digestion, metabolism and enteric methane emission of Tibetan sheep in the alpine pastoralarea[D]. Lanzhou: Lanzhou University, 2020.

    [18]

    PICKERING N, ODDY V, BASARAB J, et al. Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants[J]. Animal, 2015, 9(9): 1431-1440. doi: 10.1017/S1751731115000968

    [19]

    HRISTOV A, OH J, FIRKINS J, et al. Special topics-miti-gation of methane and nitrous oxide emissions from animal operations: I. a review of enteric methane mitigation options[J]. Journal of Animal Science, 2013, 91(11): 5045-5069. doi: 10.2527/jas.2013-6583

    [20]

    CUNHA C, LOPES N, VELOSO C, et al. Greenhouse gases inventory and carbon balance of two dairy systems obtained from two methane-estimation methods[J]. Science of the Total Environment, 2016, 571: 744-754. doi: 10.1016/j.scitotenv.2016.07.046

    [21]

    STORM I M, HELLWING A L F, NIELSEN N I, et al. Methods for measuring and estimating methane emission from ruminants[J]. Animals, 2012, 2(2): 160-183. doi: 10.3390/ani2020160

    [22]

    XU T W, ZHAO N, HU L Y, et al. Characterizing CH4, CO2 and N2O emission from barn feeding Tibetan sheep in Tibetan alpine pastoral area in cold season[J]. Atmospheric Environment, 2017, 157: 84-90. doi: 10.1016/j.atmosenv.2017.03.023

    [23]

    HUHTANEN P, BAYAT A R, LUND P, et al. Short communication: variation in feed efficiency hampers use of carbon dioxide as a tracer gas in measuring methane emissions in on-farm conditions[J]. Journal of Dairy Science, 2020, 103(10): 9090-9095. doi: 10.3168/jds.2020-18559

    [24]

    KUMARI S, FAGODIYA R, HILOIDHARI M, et al. Methane production and estimation from livestock husbandry: a mechanistic understanding and emerging mitigation options[J]. Science of the Total Environment, 2020, 709: 136135/1-14.

    [25]

    QIAO J Y, TAN Z L, GUAN L L, et al. Effects of hydrogen in headspace and bicarbonate in media on rumen fermentation, methane production and methanogenic population using in vitro gas production techniques[J]. Animal Feed Science and Technology, 2015, 206: 19-28. doi: 10.1016/j.anifeedsci.2015.05.004

    [26] 姚成胜, 钱双双, 李政通, 等. 中国省际畜牧业碳排放测度及时空演化机制[J]. 资源科学, 2017, 39(4): 698-712. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201704011.htm

    YAO C S, QIAN S S, LI ZT, et al. Provincial animal husbandry carbon emissions in China and temporal-spatial evolution mechanism[J]. Resources Science, 2017, 39(4): 698-712. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZY201704011.htm

    [27]

    DONG H M, ZHU Z P, LI Y E, et al. Tier Ⅱ MRV of livestock emissions in China-final report & annexes[EB/OL], 2020. http://cgspace.cgiar.org.

    [28]

    EGGLESTON H, BUENDIA L, MIWA K, et al. 2006 IPCC guidelines for national greenhouse gas inventories[EB/OL]. http://dx.doi.org/10/016/S1462-9011(99)00023-4.

    [29]

    CHEN S Q, SONG D, YANG J, et al. Life-cycle emission mitigation inventory and environmental benefit of household biogas mode[J]. China Population, Resources and Environment, 2012, 22(8): 76-83.

    [30]

    LUO T, YUE Q, YAN M, et al. Carbon footprint of China's livestock system-a case study of farm survey in Sichuan Province, China[J]. Journal of Cleaner Production, 2015, 102: 136-143. doi: 10.1016/j.jclepro.2015.04.077

    [31] 李虎, 王立刚, 邱建军. 基于DNDC模型的华北典型农田氮素损失分析及综合调控途径[J]. 中国生态农业学报, 2012, 20(4): 414-420. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201204006.htm

    LI H, WANG L G, QIU J J. Nitrate loss simulated with DNDC model and control technologies in typical cropland of North China[J]. Chinese Journal of Eco-Agriculture, 2012, 20(4): 414-420. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201204006.htm

    [32] 黄文强. 规模化养殖场牛奶生产碳足迹评估方法与案例分析[D]. 北京: 中国农业科学院, 2015.

    HUANG W Q. Carbon footprint assessment methodology of milk production in intensive dairy farm and case study[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.

    [33]

    MENGHISTU H T, ZENEBE A A, MAWCHA G T, et al. Greenhouse gas emission and mitigation potential from livestock production in the drylands of Northern Ethiopia[J]. Carbon Management, 2021, 12(3): 289-306. doi: 10.1080/17583004.2021.1921620

    [34]

    ROTZ C, MONTES F, CHIANESE D. The carbon footprint of dairy production systems through partial life cycle assessment[J]. Journal of Dairy Science, 2010, 93(3): 1266-1282. doi: 10.3168/jds.2009-2162

    [35]

    LESSCHEN J P, van DENBERG M, WESTHOEK H, et al. Greenhouse gas emission profiles of European livestock sectors[J]. Animal Feed Science and Technology, 2011, 166: 16-28. https://www.sciencedirect.com/science/article/pii/S0377840111001775

    [36] 林斌, 徐孟, 汪笑溪. 中国农业碳减排政策、研究现状及展望[J]. 中国生态农业学报, 2022, 30(4): 500-515. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202204002.htm

    LIN B, XU M, WANG X X. Mitigation of greenhouse gas emissions in China's agricultural sector: current status and future perspectives[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 500-515. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202204002.htm

    [37]

    MSANGI S, ENAHORO D, HERRERO M, et al. Integrating livestock feeds and production systems into agricultural multi-market models: the example of IMPACT[J]. Food Policy, 2014, 49: 365-377. doi: 10.1016/j.foodpol.2014.10.002

    [38]

    BRITZ W, VERBURG P H, LEIP A. Modelling of land cover and agricultural change in Europe: combining the CLUE and CAPRI-Spat approaches[J]. Agriculture, Ecosystems & Environment, 2011, 142(1/2): 40-50. https://www.sciencedirect.com/science/article/pii/S0167880910000885

    [39]

    WEISS F, LEIP A. Greenhouse gas emissions from the EU livestock sector: a life cycle assessment carried out with the CAPRI model[J]. Agriculture, Ecosystems & Environment, 2012, 149: 124-134. https://www.sciencedirect.com/science/article/pii/S0167880911004415

    [40] 何炫蕾. 中国农业碳排放、农业生产效率及经济发展的实证研究[D]. 兰州: 兰州大学, 2018.

    HE X L. An empirical study on agricultural carbon emission, agricultural production efficiency and economic development in China[D]. Lanzhou: Lanzhou University, 2018.

    [41] 黄秀全. 中国农业绿色全要素生产率时空特征及影响因素研究[D]. 重庆: 重庆工商大学, 2020.

    HUANG X Q. Study on the Spatio-temporal characteristics and influencing factors of agricultural green total factor productivity in China[D]. Chongqing: Chongqing Technology and Business University, 2020.

    [42] 田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ202203007.htm

    TIAN Y, YIN M H. Re-evaluation of China's agricultural carbon emissions: basic status, dynamic evolution and spatial spillover effects[J]. Chinese Rural Economy, 2022(3): 104-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNJJ202203007.htm

    [43] 胡双利. 基于LCA的我国畜禽产品生产碳排放评估及减排潜力研究[D]. 湘潭: 湖南科技大学, 2015.

    HU S L. Study on the evaluation of the livestock and poultry production of carbon emissions and mitigation potential in China based on LCA[D]. Xiangtan: Hunan University of Science and Technology, 2015.

    [44] 吴义根. 低碳约束下的中国农业生产率研究[D]. 北京: 中国农业大学, 2019.

    WU Y G. Research on agricultural productivity in China under low carbon emission constraints: perspective based on spatial econometrics[D]. Beijing: China Agricultural University, 2019.

    [45] 杨宁. 中国农业碳排放、水消费和增加值关系研究[D]. 大连: 东北财经大学, 2019.

    YANG N. Study on the relationship between China's agricultural carbon emissions, water consumption and added value[D]. Dalian: Dongbei University of Finance and Economics, 2019.

    [46] 苏旭峰, 杨小东, 冉启英. 基于碳排放视角的中国畜牧业绿色增长分析[J]. 生态经济, 2022, 38(4): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ202204010.htm

    SU X F, YANG X D, RAN Q Y. Analysis on the green growth of animal husbandry in China from the perspective of carbon emissions[J]. Ecological Economy, 2022, 38 (4): 101-107. https://www.cnki.com.cn/Article/CJFDTOTAL-STJJ202204010.htm

    [47] 胡向东, 王济民. 中国畜禽温室气体排放量估算[J]. 农业工程学报, 2010, 26(10): 247-252. doi: 10.3969/j.issn.1002-6819.2010.10.042

    HU X D, WANG J M. Estimation of livestock greenhouse gases discharge in China[J]. Transactions of the CSAE, 2010, 26(10): 247-252. doi: 10.3969/j.issn.1002-6819.2010.10.042

    [48] 郭险峰, 艾静静. 农业碳排放的时空演变、影响因素及脱钩效应研究——基于31省2000—2019年面板数据[J]. 西昌学院学报(自然科学版), 2022, 36(1): 9-15, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-XCNY202201003.htm

    GUO X F, AI J J. Temporal and spatial variation, influencing factors and decoupling effect of agricultural carbon emissions: based on panel data of 31 provinces from 2000 to 2019[J]. Journal of Xichang University(Natural Science Edition), 2022, 36(1): 9-15, 22. https://www.cnki.com.cn/Article/CJFDTOTAL-XCNY202201003.htm

    [49] 李潇潇, 张振东. OECD成员国碳排放效率时空演变与影响因素研究[J/OL]. 河北环境工程学院学报, 2022: 1-7. Doi: 10.13358/j.issn.2096-9309.2022.0103.01.

    LI X X, ZHANG Z D. Spatiotemporal evolution and impact of carbon emission efficiency of OECD member countries factor research[J/OL]. Journal of Hebei University of Environmental Engineering, 2022: 1-7. Doi: 10.13358/j.issn.2096-9309.2022.0103.01.

    [50] 吴强, 张园园, 张明月. 中国畜牧业碳排放的量化评估、时空特征及动态演化: 2001—2020[J]. 干旱区资源与环境, 2022, 36(6): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202206009.htm

    WU Q, ZHANG YY, ZHANG M Y. Quantitative assessment, temporal and spatial characteristics and dynamic evolution of China's animal husbandry carbon emissions[J]. Journal of Arid Land Resources and Environment, 2022, 36(6): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-GHZH202206009.htm

    [51] 徐丽, 曲建升, 吴金甲, 等. 中国农牧业碳排放时空变化及预测[J]. 生态与农村环境学报, 2019, 35(10): 1232-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201910002.htm

    XU L, QU J S, WU J J, et al. Spatial-temporal dynamics and prediction of carbon emission from agriculture and animal husbandry in China[J]. Journal of Ecology and Rural Environment, 2019, 35(10): 1232-1241. https://www.cnki.com.cn/Article/CJFDTOTAL-NCST201910002.htm

    [52] 田云. 中国低碳农业发展: 生产效率、空间差异与影响因素研究[D]. 武汉: 华中农业大学, 2015.

    TIAN Y. The development of China's low-carbon agriculture: production efficiency, spatial differences and influencing factors[D]. Wuhan: Huazhong Agricultural University, 2015.

    [53] 侯麟科, 仇焕广, 崔永伟, 等. 环境污染与畜牧业空间布局研究[J]. 中国人口·资源与环境, 2011, 21(12): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201112010.htm

    HOU L K, QIU H G, CUI Y W, et al. Study on environmental pollution and spatial distribution of animal husbandry[J]. China Population, Resources and Environment, 2011, 21(12): 65-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201112010.htm

    [54] 陈瑶, 尚杰. 四大牧区畜禽业温室气体排放估算及影响因素分解[J]. 中国人口·资源与环境, 2014, 24(12): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201412012.htm

    CHEN Y, SHANG J. Estimation and effecting factor decomposition of green house gas emission of animal husbandry industry in four pastoral areas[J]. China Population Resources and Environment, 2014, 24(12): 89-95. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201412012.htm

    [55]

    GUO H P, FAN B Q, PAN C L. Study on mechanisms underlying changes in agricultural carbon emissions: a case in Jilin Province, China, 1998—2018[J]. International Journal of Environmental Research Public Health, 2021, 18(3): 919/1-17.

    [56] 李俊杰. 民族地区农地利用碳排放测算及影响因素研究[J]. 中国人口·资源与环境, 2012, 22(9): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201209007.htm

    LI J J. Research on characteristics and driving factors of agricultural land carbon emission in provinces of minorities in China[J]. China Population Resources and Environment, 2012, 22(9): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201209007.htm

    [57]

    XIONG C H, SU W Z, LI H P, et al. Influencing mechanism of non-CO2 greenhouse gas emissions and mitigation strategies of livestock sector in developed regions of eastern China: a case study of Jiangsu province[J]. Environmental Science and Pollution Research, 2022, 29: 1-11.

    [58] 詹晶, 张俊娜, 邓荣荣. 我国畜牧业低碳化发展的路径选择——基于畜牧业排放源对甲烷增长的回归分析[J]. 广西社会科学, 2012(9): 50-54. https://www.cnki.com.cn/Article/CJFDTOTAL-HSKX201209014.htm
    [59] 甘雨田. 中国奶牛产业碳排放量估算及影响因素研究[D]. 哈尔滨: 东北农业大学, 2019.

    GAN Y T. Research on the estimation and influence factors of carbon emission of dairy cattle industry in China[D]. Harbin: Northeast Agricultural University, 2019.

    [60] 孔凡斌, 王智鹏, 潘丹. 基于LCA方法的生猪产业温室气体排放时空特征分析——以鄱阳湖生态经济区为例[J]. 企业经济, 2016(9): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-QUIT201609025.htm

    KONG F B, WANG Z P, PANG D. Temporal and spatial characteristics of greenhouse gas emissions from pig industry based on LCA method-a case study of Poyang Lake Ecological Economic Zone[J]. Enterprise Economy, 2016(9): 157-163. https://www.cnki.com.cn/Article/CJFDTOTAL-QUIT201609025.htm

    [61] 杜红梅, 蒋礼. 湖南省生猪养殖业碳排放的影响因素分析[J]. 黑龙江畜牧兽医, 2016(18): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJX201618004.htm

    DU H M, JIANG L. Analysis on influencing factors of carbon emission from pig breeding industry in Hunan Province[J]. Heilongjiang Animal Science and Veterinary Medicine, 2016(18): 11-14. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJX201618004.htm

    [62] 邹洁, 项朝阳. 中国大陆畜牧业环境效率测算及影响因素研究[J]. 环境污染与防治, 2016, 38(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201601017.htm

    ZOU J, XIANG C Y. Research on the livestock environmental efficiency in mainland China and its influencing factors[J]. Environmental Pollution & Control, 2016, 38(1): 90-96. https://www.cnki.com.cn/Article/CJFDTOTAL-HJWR201601017.htm

    [63] 谢婷, 张慧, 何家军, 等. 华中地区畜牧业温室气体排放特征分析与预测[J]. 中国环境科学, 2020, 40(2): 564-572. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202002014.htm

    XIE T, ZHANG H, HE J J, et al. Characteristics and prediction of greenhouse gas emissions from livestock industry in Central China[J]. China Environmental Science, 2020, 40(2): 564-572. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202002014.htm

    [64] 李阳, 陈敏鹏. 中国省域农业源非CO2温室气体排放的影响因素分析与峰值预测[J]. 环境科学学报, 2021, 41(12): 5174-5189. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202112042.htm

    LI Y, CHEN M P. Analysis of influencing factors and peak forecast of non-CO2 greenhouse gas emissions from provincial agricultural sources in China[J]. Acta Scientiae Circumstantiae, 2021, 41(12): 5174-5189. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX202112042.htm

    [65] 郭娇, 齐德生, 张妮娅, 等. 中国畜牧业温室气体排放现状及峰值预测[J]. 农业环境科学学报, 2017, 36(10): 2106-2113. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201710025.htm

    GUO J, QI D S, ZHANG N Y, et al. Chinese greenhouse gas emissions from livestock: trend and predicted peak value[J]. Journal of Agro-Environment Science, 2017, 36(10): 2106-2113. https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201710025.htm

    [66]

    LLONCH P, HASKELL M, DEWHURST R, et al. Current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective[J]. Animal, 2017, 11(2): 274-284. https://www.cambridge.org/core/journals/animal/article/current-available-strategies-to-mitigate-greenhouse-gas-emissions-in-livestock-systems-an-animal-welfare-perspective/2C1E6F2AA8B6608B9B5C49544EEB26F4

    [67]

    SCHILS R, ERIKSEN J, LEDGARD S, et al. Strategies to mitigate nitrous oxide emissions from herbivore production systems[J]. Animal, 2013, 7(S1): 29-40. https://www.cambridge.org/core/journals/animal/article/strategies-to-mitigate-nitrous-oxide-emissions-from-herbivore-production-systems/4F641EE6C19731E097520F503046EA31

    [68]

    WEI S, BAI Z, CHADWICK D, et al. Greenhouse gas and ammonia emissions and mitigation options from livestock production in peri-urban agriculture: Beijing-a case study[J]. Journal of Cleaner Production, 2018, 178: 515-525. https://www.sciencedirect.com/science/article/pii/S0959652617332511

    [69]

    YUE Q, XU X R, HILLIER J, et al. Mitigating greenhouse gas emissions in agriculture: from farm production to food consumption[J]. Journal of Cleaner Production, 2017, 149: 1011-1019. https://www.sciencedirect.com/science/article/pii/S0959652617303980

    [70]

    de VIVO R, ZICARELLI L. Influence of carbon fixation on the mitigation of greenhouse gas emissions from livestock activities in Italy and the achievement of carbon neutrality[J]. Translational Animal Science, 2021, 5(3): txab042/1-11.

    [71]

    ZHAO G, JI L S, JIA L, et al. Research and application of circular economy mode based on biogas energy as a significant technique[J]. Renewable Energy Resources, 2016, 34(10): 1574-1580.

    [72]

    LEWIS K A, TZILIVAKIS J, GREEN A, et al. Potential of feed additives to improve the environmental impact of European livestock farming: a multi-issue analysis[J]. International Journal of Agricultural Sustainability, 2015, 13(1): 55-68.

    [73] 毛竹, 陈虹, 孙瑞钧, 等. 我国海洋碳汇建设现状、问题及建议[J]. 环境保护, 2022, 50(7): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202207007.htm

    MAO Z, CHEN H, SUN R J, et al. Analysis of marine carbon sink in China: current situation, problems and suggestions[J]. Environmental Protection, 2022, 50(7): 50-53. https://www.cnki.com.cn/Article/CJFDTOTAL-HJBU202207007.htm

    [74] 刘天奇, 胡权义, 汤计超, 等. 长江中下游水稻生产固碳减排关键影响因素及技术体系[J]. 中国生态农业学报, 2022, 30(4): 603-615. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202204020.htm

    LIU T Q, HU Q Y, TANG J C, et al. Key influencing factors and technical system of carbon sequestration and emission reduction in rice production in the middle and lower reaches of the Yangtze River[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 603-615. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN202204020.htm

  • 期刊类型引用(1)

    1. 邵梦莎,洪雯雯,刘思乐,张申奥,王思祺,李金源. g-C_3N_4/TiO_2/RGO三元复合材料的制备及催化果糖脱水制5-羟甲基糠醛的研究. 化工科技. 2024(03): 18-25 . 百度学术

    其他类型引用(1)

图(2)
计量
  • 文章访问数:  989
  • HTML全文浏览量:  3374
  • PDF下载量:  400
  • 被引次数: 2
出版历程
  • 收稿日期:  2021-06-09
  • 网络出版日期:  2022-07-28
  • 刊出日期:  2022-06-24

目录

/

返回文章
返回