The Formula of Generalized Singular Values of a Class of Real Matrix Pairs
-
摘要: 应用双随机矩阵的性质, 首先得到了一类实对角矩阵迹函数优化问题的解析解, 再由该解析解得到了计算实矩阵对第i个广义奇异值的表达公式, 最后数值算例验证了结论的有效性.Abstract: Using the properties of doubly stochastic matrices, the analytic solutions to a class of real diagonal matrix optimization problems are obtained, and then the formula for the i-th generalized singular value of a real matrix pair is obtained from the analytic solutions. Finally, numerical examples verify the validity of the conclusion.
-
特征值和奇异值在数值计算领域中有着重要的应用[1]. 矩阵对的广义奇异值分解(Genera-lized Singular Value Decomposition, GSVD)已成为许多实际应用中重要的计算方法[2-8]. 近年来, 学者们对大规模数据矩阵中的GSVD进行了大量研究, 如: ZHANG等[5]应用神经动力学网络开发了一种用于求解GSVD的近似值的神经网络模型; WEI等[6]使用随机投影捕获矩阵行为, 提出一种用于计算GSVD的低秩逼近的随机算法; 刘圆圆[7]引入随机方法, 提出了一种改进的GSVD方法, 将其用于求解具有一般形式的大规模线性离散病态问题;XU等[9-10]研究了一类酉约束矩阵优化问题的解析解.
受文献[9-10]启发, 本文将利用迹函数的矩阵优化问题来计算实矩阵对的广义奇异值, 提出计算一类实矩阵对的任意广义奇异值的新公式, 并用数值算例来验证本文结论的有效性.
1. 预备知识
本文中, Rm×n表示m行n列实矩阵的集合, On表示n阶正交矩阵的集合; In为n阶单位矩阵, Om×n为m×n零矩阵, 用diag(α1, …, αn)表示对角元素为α1, …, αn的对角矩阵;det(·)表示行列式函数, tr(·)表示迹函数;rank(A)表示矩阵A的秩, AT和A-1分别表示A的转置矩阵和A的逆矩阵, σi(A)表示矩阵A的第i个奇异值.
下面给出一些基本定义和定理.
定义1 [11] 若A ∈Rm×n, B ∈Rp×n, 有rank(AT, BT)=n, 则称矩阵对{A, B}是(m, p, n)实矩阵对.
定义2 [11] 若(α, β)≠(0, 0), det(β2 AT A-α2 BT B)=0, α, β≥0, 则称(α, β)是实矩阵对{A, B}的广义奇异值. {A, B}的广义奇异值(α, β)的集合记作σ{A, B}.
定理1 [12] 若{A, B}是一个(m, p, n)实矩阵对, 则存在正交矩阵U ∈Rm×m和V ∈Rp×p以及非奇异矩阵W ∈Rn×n, 使得
UTAW−1=ΣA,VTBW−1=ΣB, (1) ΣA=(ΛO(m−r−s)×(n−r−s)),ΣB=(O(p+r−n)×rΩ), (2) 其中,
Λ=diag(α1,⋯,αr+s),Ω=diag(βr+1,⋯,βn), 1=\alpha_{1}=\cdots=\alpha_{r}>\alpha_{r+1} \geqslant \cdots \geqslant \alpha_{r+s}>\alpha_{r+s+1}=\cdots=\alpha_{n}=0, 0=\beta_{1}=\cdots=\beta_{r}<\beta_{r+1} \leqslant \cdots \leqslant \beta_{r+s}<\beta_{r+s+1}=\cdots=\beta_{n}=1, \alpha_{i}^{2}+\beta_{i}^{2}=1 \quad(1 \leqslant i \leqslant n) . 定义3 [13] 设A=(aij)∈ {\mathbb{R}} n×n, 如果对所有的i, j都有aij≥0, 则称A是非负矩阵.
定义4 [13] 设A=(aij)∈ {\mathbb{R}} n×n是非负矩阵, 如果A满足
\sum\limits_{j=1}^{n} a_{i j}=1 \quad(i=1,2, \cdots, n), \sum\limits_{i=1}^{n} a_{i j}=1 \quad(j=1,2, \cdots, n), 则称A为双随机矩阵.
2. 主要结论
本节将通过迹函数的优化问题给出一类实矩阵对广义奇异值的表达公式. 首先, 给出一些必要的引理.
引理1 [14] 如果D=(dij)是一个n阶双随机矩阵, 并且
x_{1} \geqslant \cdots \geqslant x_{n} \geqslant 0, y_{1} \geqslant \cdots \geqslant y_{n} \geqslant 0, 则
\sum\limits_{i, j=1}^{n} d_{i j} x_{i} y_{j} \leqslant \sum\limits_{i=1}^{n} x_{i} y_{i} . 引理2 令Γ=diag(γ1, …, γn)和Δ=diag(δ1, …, δn)是 {\mathbb{R}} n×n上的2个对角矩阵, γ1≥…≥γn≥0, δ1≥…≥δn≥0, 则
\max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{\varGamma}^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{\varDelta} \boldsymbol{\varPhi} \boldsymbol{\varGamma}\right)=\sum\limits_{i=1}^{n} \gamma_{i}^{2} \delta_{i} . 证明 令Φ*= In, 则
\begin{aligned} &\max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{\varGamma}^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{\varDelta} \boldsymbol{\varPhi} \boldsymbol{\varGamma}\right) \geqslant \operatorname{tr}\left(\boldsymbol{\varGamma}^{\mathrm{T}}\left(\boldsymbol{\varPhi}^{*}\right)^{\mathrm{T}} \boldsymbol{\varDelta} \boldsymbol{\varPhi}^{*} \boldsymbol{\varGamma}\right)= \\ &\ \ \ \ \ \ \ \ \operatorname{tr}\left(\boldsymbol{\varGamma}^{\mathrm{T}} \boldsymbol{\varDelta} \boldsymbol{\varGamma}\right)=\sum\limits_{i=1}^{n} \gamma_{i}^{2} \delta_{i} . \end{aligned} 另一方面, 因为tr(AB)=tr(BA), 有
\begin{gathered} \max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{\varGamma}^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{\varDelta} \boldsymbol{\varPhi} \boldsymbol{\varGamma}\right)=\max \limits_{\boldsymbol{\varPhi} \in \boldsymbol{O}_{n}} \operatorname{tr}\left(\boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{\varDelta} \boldsymbol{\varPhi} \boldsymbol{\varGamma} \boldsymbol{\varGamma}^{\mathrm{T}}\right)= \\ \ \ \ \ \ \ \ \ \max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{\varDelta} \boldsymbol{\varPhi} \boldsymbol{\varGamma}^{2}\right)=\max \limits_{\boldsymbol{\varPhi}=\left(\varphi_{i j}\right) \in \mathbb{O}_{n}}\left(\sum\limits_{i, j=1}^{n} \varphi_{i j}^{2} \delta_{i} \gamma_{j}^{2}\right), \end{gathered} 则可知矩阵(φij2)是双随机矩阵. 由引理1, 有
\max \limits_{{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{\varGamma}^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{\varDelta} \boldsymbol{\varPhi} \boldsymbol{\varGamma}\right)=\max \limits_{\boldsymbol{\varPhi}=\left(\varphi_{i j}\right) \in \mathbb{O}_{n}}\left(\sum\limits_{i, j=1}^{n} \varphi_{i j}^{2} \delta_{i} \gamma_{j}^{2}\right) \leqslant \sum\limits_{i=1}^{n} \gamma_{i}^{2} \delta_{i} . 证毕.
由引理2可得以下推论.
推论1 令Γ=diag(γ1, …, γn)和Δ=diag(δ1, …, δn)是 {\mathbb{R}} n×n上的2个对角矩阵, 0≤γ1≤…≤γn, 0≤δ1≤…≤δn, 则
\max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{\varGamma}^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{\varDelta} \boldsymbol{\varPhi} \boldsymbol{\varGamma}\right)=\sum\limits_{i=1}^{n} \gamma_{i}^{2} \delta_{i} . 下面给出一类(n, n, n)实矩阵对{A, B}的广义奇异值{(αi, βi)}i=1n的表达公式.
定理2 设{A, B}是(n, n, n)实矩阵对, 其广义奇异值为{(αi, βi)}i=1n. 则对于1≤i≤n, 有
\begin{aligned} \alpha_{i}^{2}=& \max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{Q}_{i} \boldsymbol{\varPhi} \boldsymbol{A}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}+\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1}\right)-\\ & \max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{Q}_{i-1} \boldsymbol{\varPhi} \boldsymbol{A}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}+\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1}\right), \end{aligned} (3) 其中,
\boldsymbol{Q}_{i}=\operatorname{diag}\left(\boldsymbol{I}_{i}, \boldsymbol{O}_{(n-i) \times(n-i)}\right). (4) 证明 令{A, B}是由式(1)和式(2)定义的(n, n, n)实矩阵对, 则有
\boldsymbol{\varSigma}_{\boldsymbol{A}}^{\mathrm{T}} \boldsymbol{\varSigma}_{\boldsymbol{A}}+\boldsymbol{\varSigma}_{\boldsymbol{B}}^{\mathrm{T}} \boldsymbol{\varSigma}_{\boldsymbol{B}}=\boldsymbol{I}_{n}. 进一步地, 有
\left(\boldsymbol{U}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{W}^{-1}\right)^{\mathrm{T}}\left(\boldsymbol{U}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{W}^{-1}\right)+\left(\boldsymbol{V}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{W}^{-1}\right)^{\mathrm{T}}\left(\boldsymbol{V}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{W}^{-1}\right)=\boldsymbol{I}_{n}, 化简得
\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}+\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}=\boldsymbol{W}^{\mathrm{T}} \boldsymbol{W}. 对任意的1≤i≤n, 令Qi由式(4)定义. 因为tr(AB)=tr(BA), 则由引理2, 可得
\begin{aligned} \max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} &\ \operatorname{tr}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{Q}_{i} \boldsymbol{\varPhi} \boldsymbol{A}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}+\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1}\right)=\\ & \max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{Q}_{i} \boldsymbol{\varPhi} \boldsymbol{A}\left(\boldsymbol{W}^{\mathrm{T}} \boldsymbol{W}\right)^{-1}\right)=\\ & \max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\left(\boldsymbol{W}^{\mathrm{T}}\right)^{-1} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{Q}_{i} \boldsymbol{\varPhi} \boldsymbol{A} \boldsymbol{W}^{-1}\right)=\\ & \max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\left(\boldsymbol{A} \boldsymbol{W}^{-1}\right)^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{Q}_{i} \boldsymbol{\varPhi} \boldsymbol{A} \boldsymbol{W}^{-1}\right)=\\ & \max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{\varSigma}_{A}^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{Q}_{i} \boldsymbol{\varPhi} \boldsymbol{U} \boldsymbol{\varSigma}_{A}\right)=\alpha_{1}^{2}+\cdots+\alpha_{i}^{2} . \end{aligned} 类似地,
\max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{Q}_{i-1} \boldsymbol{\varPhi} \boldsymbol{A}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}+\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1}\right)=\alpha_{1}^{2}+\cdots+\alpha_{i-1}^{2} . 因此, 式(3)得证. 证毕.
注1 (1)由定理1知广义奇异值{(αi, βi)}i=1n满足
\alpha_{i}^{2}+\beta_{i}^{2}=1 \quad(1 \leqslant i \leqslant n), 因此, 由定理2易得βi2 (1≤i≤n).
(2) 定理2通过矩阵迹函数的优化问题给出了一类(n, n, n)实矩阵对{A, B}的广义奇异值{(αi, βi)}i=1n的表达公式, 提供了一种用迹函数极大值优化问题来表示实矩阵对广义奇异值的新思路.
3. 数值算例
本节给出一些数值算例来验证定理2的有效性.
例1 设
\boldsymbol{A}=\left(\begin{array}{llll} 2 & 3 & 4 & 2 \\ 1 & 5 & 9 & 4 \\ 5 & 4 & 1 & 6 \\ 8 & 2 & 4 & 6 \end{array}\right), \boldsymbol{B}=\left(\begin{array}{llll} 5 & 4 & 2 & 6 \\ 8 & 4 & 6 & 1 \\ 2 & 5 & 4 & 9 \\ 3 & 5 & 7 & 4 \end{array}\right), 利用MATLAB R2020a的命令gsvd, 可以得到实矩阵对{A, B}的广义奇异值为
\begin{gathered} \boldsymbol{\sigma}\{\boldsymbol{A}, \boldsymbol{B}\}=\left\{\left(\alpha_{i}, \boldsymbol{\beta}_{i}\right)\right\}=\{(0.993,0.115),(0.877,0.480), \\ (0.606,0.795),(0.149,0.989)\} . \end{gathered} 应用引理2, 记H=A(ATA+BTB)-1AT, 有
\begin{aligned} \max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}}&\ \operatorname{tr}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{Q}_{i} \boldsymbol{\varPhi} \boldsymbol{A}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}+\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1}\right)= \\ &\max \limits_{\boldsymbol{\varPhi} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{\varPhi}^{\mathrm{T}} \boldsymbol{Q}_{i} \boldsymbol{\varPhi} \boldsymbol{A}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}+\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1} \boldsymbol{A}^{\mathrm{T}}\right)= \\ &\sum\limits_{j=1}^{n} \sigma_{j}\left(\boldsymbol{Q}_{i}\right) \sigma_{j}(\boldsymbol{H}), \end{aligned} 其中, σj(Qi)为Qi的第j个奇异值, σj(H)为矩阵A(AT A+BT B)-1 AT的第j个奇异值, 并记f({\boldsymbol{Q}_i})= \max\limits_{{\mathit{\pmb{\Phi}}} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{A}^{\mathrm{T}} {\mathit{\pmb{\Phi}}}^{\mathrm{T}} \boldsymbol{Q}_{i} {\mathit{\pmb{\Phi}}} \boldsymbol{A}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}+\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1}\right) . 利用MATLAB R2020a的命令svd, 可得矩阵H的奇异值: σ1(H)=0.987, σ2(H)=0.770, σ3(H)=0.368, σ4(H)=0.022.
由计算得到的αi2、f(Qi)和f(Qi)-f(Qi-1)(表 1)可知式(3)成立,从而验证了定理2的结论是正确的.
表 1 已知实矩阵对{A, B} 计算的αi2和f(Qi)- f(Qi-1)Table 1. The αi2 and f(Qi)- f(Qi-1) calculated by known real matrix pair {A, B}i αi αi2 f(Qi) f(Qi)-f(Qi-1) 1 0.993 0.987 0.987 0.987 2 0.877 0.770 1.756 0.770 3 0.606 0.368 2.124 0.368 4 0.149 0.022 2.146 0.022 例2 设n=100. 使用MATLAB R2020a中的命令rand, 随机生成满足
1=\alpha_{1}=\cdots=\alpha_{r}>\alpha_{r+1} \geqslant \cdots \geqslant \alpha_{r+s}>\alpha_{r+s+1}=\cdots=\alpha_{n}=0, 0=\beta_{1}=\cdots=\beta_{r}<\beta_{r+1} \leqslant \cdots \leqslant \beta_{r+s}<\beta_{r+s+1}=\cdots=\beta_{n}=1 和
\alpha_{i}^{2}+\beta_{i}^{2}=1 \quad(1 \leqslant i \leqslant n) 的广义奇异值{(αi, βi)}i=1n (表 2).
表 2 广义奇异值{(αi, βi)}i=1nTable 2. The generalized singular values {(αi, βi)}i=1ni αi βi i αi βi 1 0.996 0.085 94 0.087 0.996 2 0.988 0.156 95 0.051 0.999 3 0.987 0.159 96 0.039 0.999 4 0.970 0.244 97 0.030 1.000 5 0.950 0.314 98 0.022 1.000 6 0.947 0.322 99 0.021 1.000 7 0.928 0.373 100 0.007 1.000 … … … 于是, 实矩阵对{A, B}有广义奇异值分解
\boldsymbol{A}=\boldsymbol{U} \operatorname{diag}\left(\alpha_{1}, \cdots, \alpha_{n}\right) \boldsymbol{W}, \boldsymbol{B}=\boldsymbol{V} \operatorname{diag}\left(\beta_{1}, \cdots, \beta_{n}\right) \boldsymbol{W}, 其中,正交矩阵U、V以及非奇异矩阵W可由MATLAB R2020a中命令orth和randn生成. 这里记 f({\boldsymbol{Q}_i})= \max\limits_{{\mathit{\pmb{\Phi}}} \in \mathbb{O}_{n}} \operatorname{tr}\left(\boldsymbol{A}^{\mathrm{T}} {\mathit{\pmb{\Phi}}}^{\mathrm{T}} \boldsymbol{Q}_{i} {\mathit{\pmb{\Phi}}} \boldsymbol{A}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}+\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B}\right)^{-1}\right) . 于是, 计算αi2、f(Qi)和f(Qi)-f(Qi-1), 由结果(表 3)可知式(3)成立,从而验证了定理2的结论是正确的.
表 3 已知广义奇异值计算的αi2和f(Qi)-f(Qi-1)Table 3. The αi2 and f(Qi)-f(Qi-1) calculated with known generalized singular valuesi αi2 f(Qi) f(Qi)-f(Qi-1) 1 0.993 0.993 0.993 2 0.976 1.968 0.976 3 0.975 2.943 0.975 4 0.941 3.884 0.941 5 0.902 4.785 0.902 6 0.897 5.682 0.897 7 0.861 6.543 0.861 … … … … 94 0.008 34.596 0.008 95 0.003 34.599 0.003 96 0.002 34.601 0.002 97 0.001 34.602 0.001 98 0.000 34.602 0.000 99 0.000 34.602 0.000 100 0.000 34.602 0.000 -
表 1 已知实矩阵对{A, B} 计算的αi2和f(Qi)- f(Qi-1)
Table 1 The αi2 and f(Qi)- f(Qi-1) calculated by known real matrix pair {A, B}
i αi αi2 f(Qi) f(Qi)-f(Qi-1) 1 0.993 0.987 0.987 0.987 2 0.877 0.770 1.756 0.770 3 0.606 0.368 2.124 0.368 4 0.149 0.022 2.146 0.022 表 2 广义奇异值{(αi, βi)}i=1n
Table 2 The generalized singular values {(αi, βi)}i=1n
i αi βi i αi βi 1 0.996 0.085 94 0.087 0.996 2 0.988 0.156 95 0.051 0.999 3 0.987 0.159 96 0.039 0.999 4 0.970 0.244 97 0.030 1.000 5 0.950 0.314 98 0.022 1.000 6 0.947 0.322 99 0.021 1.000 7 0.928 0.373 100 0.007 1.000 … … … 表 3 已知广义奇异值计算的αi2和f(Qi)-f(Qi-1)
Table 3 The αi2 and f(Qi)-f(Qi-1) calculated with known generalized singular values
i αi2 f(Qi) f(Qi)-f(Qi-1) 1 0.993 0.993 0.993 2 0.976 1.968 0.976 3 0.975 2.943 0.975 4 0.941 3.884 0.941 5 0.902 4.785 0.902 6 0.897 5.682 0.897 7 0.861 6.543 0.861 … … … … 94 0.008 34.596 0.008 95 0.003 34.599 0.003 96 0.002 34.601 0.002 97 0.001 34.602 0.001 98 0.000 34.602 0.000 99 0.000 34.602 0.000 100 0.000 34.602 0.000 -
[1] 戴应超. 任意实矩阵的实特征值与奇异值的估计[J]. 华南师范大学学报(自然科学版), 2005(4): 11-14. doi: 10.3969/j.issn.1000-5463.2005.04.003 DAI Y C. The estimations for real eigenvalues and singular values[J]. Journal of South China Normal University(Natural Science Edition), 2005(4): 11-14. doi: 10.3969/j.issn.1000-5463.2005.04.003
[2] VAN L C F. Generalizing the singular value decomposition[J]. SIAM Journal on Numerical Analysis, 1976, 13: 76-83. doi: 10.1137/0713009
[3] BANDHIT S, MASAHIRO F. An efficient framework for estimating the direction of multiple sound sources using higher-order generalized singular value decomposition[J]. Sensors, 2019, 19: 1-29. doi: 10.1109/JSEN.2019.2925985
[4] XU W W, PANG H K, LI W, et al. On the explicit expression of chordal metric between generalized singular values of Grassmann matrix pairs with applications[J]. SIAM Journal on Matrix Analysis and Applications, 2018, 39: 1547-1563. doi: 10.1137/17M1140510
[5] ZHANG L P, WEI Y M, CHU E K. Neural network for computing GSVD and RSVD[J]. Neurocomputing, 2021, 444: 59-66. doi: 10.1016/j.neucom.2020.10.057
[6] WEI W, ZHANG H, YANG X, et al. Randomized genera- lized singular value decomposition[J]. Communications on Applied Mathematics and Computation, 2021, 3: 137-156. doi: 10.1007/s42967-020-00061-x
[7] 刘圆圆. 一类改进的广义随机奇异值分解方法[J]. 科学技术创新, 2020(35): 32-33. doi: 10.3969/j.issn.1673-1328.2020.35.012 [8] HUANG J Z, JIA Z X. On choices of formulations of computing the generalized singular value decomposition of a large matrix pair[J]. Numerical Algorithms, 2020, 87(2): 689-718. doi: 10.1007/s11075-020-00984-9
[9] XU W W, GE Z H, ZHU L. Analytic solutions of a class of extended constrained matrix maximization problems[J]. Applied Mathematics and Computation, 2020, 372: 1-8. doi: 10.1016/j.amc.2020.125120
[10] XU W W, LU Y, ZHU L. An extension of analytic solutions of a class of constrained matrix minimization pro-blems[J]. Journal of Computational and Applied Mathematics, 2020, 372: 1-12. http://www.sciencedirect.com/science/article/pii/S0377042719306764
[11] GOLUB G H, VAN L C F. Matrix computations[M]. Baltimore: Johns Hopkins University Press, 2013.
[12] XU W W, LI W, ZHU L, et al. The analytic solutions of a class of constrained matrix minimization and maximization problems with applications[J]. SIAM Journal on Optimization, 2019, 29: 1657-1686. doi: 10.1137/17M1140777
[13] 张贤达. 矩阵分析与应用[M]. 北京: 清华大学出版社, 2013. [14] MIRSKY L. A trace inequality of John von Neumann[J]. Monatshefte für Mathematik, 1975, 79: 303-306. doi: 10.1007/BF01647331
计量
- 文章访问数: 451
- HTML全文浏览量: 171
- PDF下载量: 63