The Macrobenthos Community Structure and Its Relationships with Water Quality Factors in the Liujiang River Basin
-
摘要: 以柳江流域23个点位为例,研究了不同水文季节(3月和6月)水质因子(DO、CODMn、NH3-N、As、Hg、Cd、Pb)对底栖动物群落结构的影响,2次调查共鉴定出底栖动物4门7纲16目54科68属(种),种类相似系数为83.76%,物种丰富度表现为枯水期略高于丰水期,底栖动物优势种在枯、丰水期分别有4种和2种,具有明显的季节演替. DCA和TWINSPAN分析结果显示:柳江流域底栖动物群落结构在时空分布上存在一定差异,主要表现为枯、丰水期均有3个不同的底栖动物类群大致依次分布在该流域干流及支流的源头、中上游及下游,群落内指示物种呈现出由清洁种逐渐过渡到耐污种的变化. 指示物种分析结果(ISA)显示:在枯水期,共有8种底栖动物能作为柳江源头和大环江上游群落的指示种,分别为四节蜉属(Baetis sp.)、锯形蜉(Serratella sp.)、溪泥甲一属(Zaitzevia sp.)、短脉纹石娥属(Cheumatopsyche sp.)、蜗虫(Dugesia sp.)、朝大蚊属(Antocha)、摇蚊属(Chironomus sp.)和细蜉属(Caenis sp.),其他类群无显著指示种;在丰水期,共有5种底栖动物能作为群落划分的指示种,其中,方格短沟蜷(Semisulcospira cancellata)、钉螺(Oncomelania sp.)是柳江中上游的指示种,汉森安春蜓(Amphigomphus hansoni)、河蚬(Corbicula fluminea)、卷扁螺(Gyraulus compressus)是柳江下游的指示种. CCA分析结果显示:CODMn和DO是枯、丰水期均对柳江流域底栖动物群落分布有重要影响的水质驱动因子,而重金属因子(Cd、Pb、Hg)在枯水期对底栖动物分布影响较大, NH3-N在丰水期对底栖动物分布影响较大.Abstract: In order to study the influence of water quality factors (DO, CODMn, NH3-N, As, Hg, Cd, Pb) on macrobenthos community structure in different hydrological seasons in the Liujiang River basin, investigations were conducted in the Liujiang River basin and 4 phyla, 7 classes, 16 orders, 54 families and 68 genera (species) of macrobenthos were identified. The Czekanowsiki is 83.76% and the species richness is slightly higher in the dry season than in the wet season. There were 4 and 2 dominant species of macrobenthos in dry and wet seasons respectively, showing obvious seasonal succession. The results of TWINSPAN and DCA analysis show that there are certain differences in the temporal and spatial distribution of the macrobenthos community structure in the Liujiang River basin. In both the dry and the wet season, there are 3 different macrobenthos communities distributed respectively around the source, the upper and middle reaches and the lower reaches of the main stream and tributaries of the river. The indicator species in the community show a gradual transition from clean species to pollution-tolerant species. The results of indicator species analysis shows that, in the dry season, there are a total of 8 macrobenthos species that can be used as indicator species for the communities at the source of the Liujiang River and the upper reaches of the Dahuan River, namely Baetis sp., Serratella sp., Zaitzevia sp., Cheumatopsyche sp., Dugesia sp., Antocha, Chironomus sp. and Caenis sp., and the other communities have no significant indicator species. In the wet season, there are 5 macrobenthos species that can be used as indicator species for community division, among which Semisulcospira cancellata and Oncomelania sp. are indicator species in the middle and upper reaches of the Liujiang River and Amphigomphus hansoni, Corbicula fluminea and Gyraulus compressus are indicator species in the lower reaches of the Liujiang River. The CCA analysis results show that CODMn and DO are the water quality factors that have important effects on the macrobenthos community structure in the Liujiang River basin in the dry and wet seasons, the heavy metal factors (Cd, Pb, Hg) have a greater impact on the distribution of macrobenthos in the dry season, and NH3-N has a greater impact on the distribution of macrobenthos in the wet season.
-
-
图 5 柳江流域环境因子与物种组成的CCA排序图(枯水期)
Figure 5. The CCA biplot of environmental variables and species composition in the Liujiang River basin (dry season)
1: Cheumatopsyche sp.; 2: Macromidae; 3: Antocha; 4: Simulium sp.; 5: Chironomus sp.; 6: Epeorus sp.; 7: Choroterpes sp.; 8: Baetis sp.; 9: Afronurus rubromaculata; 10: Labiobaetis ancoralis; 11: Labiobaetis atrebatinus orientalis ; 12: Procloeon sp.; 13: Caenis sp.; 14: Serratella sp.; 15: Micronecta; 16: Zaitzevia sp.; 17: Protohermes sp.; 18: Sulcospira cf hainanensis; 19: Sinotaia sp.; 20: Stenothyra sp.; 21: Radix sp.; 22: Semisulcospira sp.; 23: Tarebia granifera ; 24: Physa sp.; 25: Galba sp.; 26: Limnoperna lacustris; 27: Macrobrachium sp.; 28: caridina sp.; 29: Corbicula fluminea; 30: Glossiphonia sp.; 31: Dugesia sp.
图 6 柳江流域环境因子与物种组成的CCA排序图(丰水期)
Figure 6. The CCA biplot of environmental variables and species composition in the Liujiang River basin (wet season)
1: Cheumatopsyche sp2; 2: Amphigomphus hansoni; 3: Leptogomphus intermedius; 4: Baetis sp.; 5: Labiobaetis ancoralis; 6: Labiobaetis atrebatinus orientalis; 7: Habrophlebiodes gilliesi; 8: Ordobrevia sp.; 9: Bezzia sp.; 10: Culex sp.; 11: Chironomussp.; 12: Micronecta sp.; 13: Micronecta quadristrigata; 14: Neocaridina serrata; 15: Corbicula fluminea; 16: Galba pervia; 17: Gyraulus compressus; 18: Sinotaia sp.; 19: Bellamya sp.; 20: Physa acuta; 21: Semisulcospira cancellata; 22: Melanodies sp.; 23: Tarebia granifera; 24: Oncomelania sp.; 25: Radix auricularia; 26: Radix swinhoei.
表 1 柳江流域采样点地理位置分布表
Table 1 The locations of sampling sites in the Liujiang River basin
采样点 河流 干/支流 经度 纬度 采样点 河流 干/支流 经度 纬度 S1 都柳江 干流 107°35.29′ 25°51.49′ S13 大环江 支流 108°18.14′ 24°53.46′ S2 都柳江 干流 108°30.46′ 25°55.13′ S14 大环江 支流 108°09.10′ 24°43.34′ S3 都柳江 干流 108°54.16′ 25°44.37′ S15 大环江 支流 108°08.49′ 24°42.51′ S4 都柳江 干流 109°24.23′ 25°42.21′ S16 小环江 支流 108°28.04′ 24°34.24′ S5 融江 干流 109°23.51′ 25°13.12′ S17 龙江 支流 108°28.12′ 24°34.04′ S6 融江 干流 109°15.12′ 25°03.15′ S18 龙江 支流 108°39.13′ 24°29.60′ S7 打狗河 支流 107°46.57′ 25°34.49′ S19 柳江 干流 109°10.23′ 24°40.15′ S8 打狗河 支流 107°53.22′ 25°25.04′ S20 柳江 干流 109°15.03′ 24°31.45′ S9 龙江 支流 107°51.33′ 24°50.05′ S21 柳江 干流 109°23.53′ 24°19.47′ S10 龙江 支流 107°55.02′ 24°44.56′ S22 柳江 干流 109°40.19′ 23°57.21′ S11 大环江 支流 108°15.19′ 25°23.26′ S23 柳江 干流 109°31.52′ 23°50.30′ S12 大环江 支流 108°12.21′ 50°00.54′ 表 2 柳江流域大型底栖无脊椎动物优势种组成(Y≥0.02)
Table 2 The composition of dominant macrobenthos species in the Liujiang River basin(Y≥0.02)
时期 种类 占总个数的比例Pi/% 出现频率fi/% 优势度Y 枯水期 萝卜螺属Radix 7.64 69.57 0.053 摇蚊属Chironomus 5.13 43.48 0.022 小划蝽属Micronecta 16.80 39.13 0.066 囊螺属Physa 6.60 39.13 0.026 丰水期 新米虾属Neocaridina 10.15 47.83 0.049 小划蝽属Micronecta 14.75 21.74 0.032 表 3 柳江流域大型底栖动物主要群落分布类型
Table 3 The distribution types of main macrobenthic communities in the Liujiang River basin
时间 类群 采样点位 枯水期 A1 S7、S8、S12、S13、S14、S15、S19、S22 A2 S2、S3、S4、S5、S6、S9、S10、S16、S17、S18、S20、S21、S23 A3 S1、S11 丰水期 B1 S7、S11、S12、S13、S14、S19、S21、S22、S23 B2 S2、S3、S4、S5、S6、S16、S17 B3 S1、S8、S15 表 4 柳江大型底栖动物群落划分及指示物种分析
Table 4 The community division of macrobenthos in the Liujiang River basin and the indicator species analysis
时期 类群 指示种 指示值 P 枯水期 A3 Baetis sp. 1.000 0.005** Serratella sp. 1.000 0.005** Zaitzeviasp. 1.000 0.005** Cheumatopsyche sp. 0.999 0.005** Dugesia sp. 0.967 0.005** Antocha 0.994 0.001** Chironomus sp. 0.918 0.019* Caenis sp. 0.705 0.048* 丰水期 B2 Semisulcospira cancellata 0.845 0.010** Oncomelania sp. 0.756 0.032* B3 Amphigomphus hansoni 0.816 0.018* Corbicula fluminea 0.816 0.012* Gyraulus compressus 0.816 0.018* 注: * *表示P<0.01,*表示P<0.05. 表 5 柳江流域水质理化因子特征(平均值±标准差)
Table 5 The characteristics of water quality factors in the Liujiang River basin(Mean±SD)
水质因子的质量浓度 枯水期 丰水期 P A1 A2 A3 总 B1 B2 B3 总 ρ(DO)/(mg·L-1) 7.67±1.58 8.29±0.89 9.21±0.21 8.15±1.19 10.37±0.85 10.46±0.80 11.71±1.19 10.61±0.96 0.000** ρ(CODMn)/(mg·L-1) 1.65±0.59 1.37±0.42 1.05±0.21 1.44±0.49 1.96±0.42 1.51±0.29 1.90±0.44 1.78±0.42 0.003** ρ(NH3-N)/(mg·L-1) 0.15±0.14 0.27±0.62 0.02±0.02 0.21±0.47 0.29±0.21 0.18±0.14 0.24±0.20 0.24±0.18 0.009** ρ(As)/(μg·L-1) 8.630±8.314 6.460±7.881 11.000±4.243 7.609±7.674 1.956±1.528 1.437±0.506 1.057±0.501 1.623±1.128 0.228 ρ(Hg)/(μg·L-1) 0.025±0.055 0.007±0.017 — 0.013±0.035 0.032±0.023 0.033±0.024 0.020±0.020 0.031±0.022 0.000** ρ(Cd)/(μg·L-1) 0.109±0.308 0.02±0.038 — 0.049±0.181 0.314±0.323 0.181±0.077 0.207±0.139 0.248±0.234 0.000** ρ(Pb)/(μg·L-1) 2.611±2.639 1.509±1.323 1.26±0.438 1.870±1.868 15.732±36.913 3.126±0.935 6.060±4.031 9.561±25.395 0.001** 注: * *表示P<0.01,*表示P<0.05. 表 6 CCA排序轴对应的特征值、物种-水质因子相关性及累积变化率
Table 6 The Eigenvalues, species-environment correlation and changing percentages for CCA axis
时期 排序轴 特征值 物种-水质因子相关性 物种数据累积变化率/% 物种-水质因子关系累积变化率/% 枯水期 1 0.579 0.894 8.5 23.6 2 0.549 0.901 16.5 45.9 3 0.411 0.854 22.5 62.7 4 0.370 0.891 28.0 77.7 丰水期 1 0.582 0.909 11.8 32.7 2 0.408 0.851 20.1 55.6 3 0.310 0.867 26.4 73.0 4 0.216 0.805 30.8 85.1 表 7 CCA前2轴与水质因子相关系数
Table 7 The correlations between water quality factors and the first two axes of CCA
水质因子 枯水期 丰水期 轴1 轴2 轴1 轴2 DO -0.813 8 -0.032 9 -0.520 9 -0.607 0 CODMn 0.104 4 0.852 0 -0.818 1 0.013 7 NH3-N 0.233 6 0.097 5 0.160 7 0.346 2 As 0.271 0 -0.054 8 0.259 9 0.217 4 Hg 0.057 7 0.433 3 — — Cd 0.046 2 0.572 0 0.115 3 0.287 9 Pb 0.246 0 0.461 6 -0.008 7 0.007 7 -
[1] 戴纪翠, 倪晋仁. 底栖动物在水生生态系统健康评价中的作用分析[J]. 生态环境, 2008, 17(5): 2107-2111. doi: 10.3969/j.issn.1674-5906.2008.05.075 DAI J C, NI J R. Roles of benthos in the aquatic ecosystem health assessment, China[J]. Ecology and Environment, 2008, 17(5): 2107-2111. doi: 10.3969/j.issn.1674-5906.2008.05.075
[2] BENKE A C. Concepts and patterns of invertebrate production in running waters[J]. Sil Proceedings, 1993, 25(1): 15-38.
[3] 段学花, 王兆印, 徐梦珍. 底栖动物与河流生态评价[M]. 北京: 清华大学出版社, 2010. [4] 迟国梁, 赵颖, 官昭瑛, 等. 广东横石水河大型底栖动物群落与环境因子的关系[J]. 生态学报, 2010, 30(11): 2836-2845. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201011005.htm CHI G L, ZHAO Y, GUAN Z Y, et al. Relationship between macroinvertebrate and environmental variables in Hengshishui River, Guangdong, China[J]. Acta Ecologica Sinica, 2010, 30(11): 2836-2845. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201011005.htm
[5] 刘祥, 陈凯, 陈求稳, 等. 淮河流域典型河流夏秋季底栖动物群落特征及其与环境因子的关系[J]. 环境科学学报, 2016, 36(6): 1928-1938. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201606005.htm LIU X, CHEN K, CHEN Q W, et al. The community structure of macroinvertebrate and its relationship to the environmental factors in summer andautumn within typical reaches of Huai River Basin[J]. Acta Scientiae Circumstantiae, 2016, 36(6): 1928-1938. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201606005.htm
[6] 吴召仕, 蔡永久, 陈宇炜, 等. 太湖流域主要河流大型底栖动物群落结构及水质生物学评价[J]. 湖泊科学, 2011, 23(5): 686-694. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201105005.htm WU S S, CAI Y J, CHEN Y W, et al. Assemblage structure investigation of macrozoobenthos and water quality bioassessmentof the main river systems in Taihu Basin[J]. Lake Sciences, 2011, 23(5): 686-694. https://www.cnki.com.cn/Article/CJFDTOTAL-FLKX201105005.htm
[7] 曹然, 黎征武, 毛建忠, 等. 北江大型底栖无脊椎动物群落结构及水质的生物评价[J]. 水资源保护, 2017, 33(4): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB201704013.htm CAO R, LI Z W, MAO J Z, et al. Benthic macroinvertebrate community structure andbioassessment of water quality of Beijiang River[J]. Water Resources Protection, 2017, 33(4): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-SZYB201704013.htm
[8] 渠晓东, 曹明, 邵美玲, 等. 雅砻江(锦屏段)及其主要支流的大型底栖动物[J]. 应用生态学报, 2007(1): 158-162. doi: 10.3321/j.issn:1001-9332.2007.01.027 QU X D, CAO M, SHAO M L, et al. Macrobenthos in Jinping reach of Yalong River and its main tributaries[J]. Chinese Journal of Applied Ecology, 2007(1): 158-162. doi: 10.3321/j.issn:1001-9332.2007.01.027
[9] DUFRENE M, LEGENDRE P. Species assemblages and indicator species: the need for a flexible asymmetrical approach[J]. Ecological Monographs, 1997, 67(3): 345-366. http://orbi.ulg.ac.be/bitstream/2268/145383/1/Dufrene Legendre 1997 Ecol Monographs.pdf
[10] 张清华, 韦永著, 曹建华, 等. 柳江流域饮用水源地重金属污染与健康风险评价[J]. 环境科学, 2018, 39(4): 1598-1607. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201804019.htm ZHANG Q H, WEI Y Z, CAO J H, et al. Heavy metal pollution of the drinking water sources in the Liujiang River basin, and related health risk assessments[J]. Environmental Science, 2018, 39(4): 1598-1607. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201804019.htm
[11] 孟伟, 张远, 渠晓东. 河流生态调查技术方法[M]. 北京: 科学出版社, 2011. [12] RICHOUX P, BOURNAUD M, USSEGLIO-POLATERA P, et al. 淡水无脊椎动物系统分类、生物及生态学[M]. 刘威, 王旭涛, 黄少峰, 译. 北京: 中国水利水电出版社, 2015. [13] 国家环保局本书编委会. 水和废水监测分析方法[M]. 北京: 中国环境科学出版社, 1989. [14] 李佳静, 刘威, 邓培雁. 柳江流域不同水文季节水质对附生硅藻群落的影响研究[J]. 生态科学, 2020, 39(1): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX202001002.htm LI J J, LIU W, DENG P Y. The effects of water quality on epilithic diatom community in different hydrological seasons in Liujiang River basin[J]. Ecological Science, 2020, 39(1): 10-19. https://www.cnki.com.cn/Article/CJFDTOTAL-STKX202001002.htm
[15] 王备新. 大型底栖无脊椎动物水质生物评价研究[D]. 南京: 南京农业大学, 2003. [16] 殷旭旺, 徐宗学, 高欣, 等. 渭河流域大型底栖动物群落结构及其与环境因子的关系[J]. 应用生态学报, 2013, 24(1): 218-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201301035.htm YIN X W, XU Z X, GAO X, et al. Macrobenthos community structure and its relationships with environmental factors in WeiheRiver basin, Northwest China[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 218-226. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201301035.htm
[17] 李巧. 指示值方法及其在昆虫中的应用[J]. 应用昆虫学报, 2011, 48(2): 457-462. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201102042.htm LI Q. Indicator Value (IndVal) method and its application[J]. Chinese Journal of Applied Entomology, 2011, 48(2): 457-462. https://www.cnki.com.cn/Article/CJFDTOTAL-KCZS201102042.htm
[18] 程谦伟, 孟陆丽, 易弋, 等. 柳江市区段底栖动物的生态研究[J]. 安徽农业科学, 2010, 38(17): 9048-9050. doi: 10.3969/j.issn.0517-6611.2010.17.085 CHENG Q W, MENG L L, YI Y, et al. Ecosystem survey of zoobenthos in the cantonal of Liujiang[J]. Anhui Agricultural Sciences, 2010, 38(17): 9048-9050. doi: 10.3969/j.issn.0517-6611.2010.17.085
[19] BUSS D F, BAPTISTA D F, SILVEIRA M P, et al. Influence of water chemistry and environmental degradation on macroinvertebrate assemblages in a river basin in south-east Brazil[J]. Hydrobiologia, 2002, 481(1/2/3): 125-136. http://www.onacademic.com/detail/journal_1000034817910310_a52a.html
[20] 姚凯胜, 和雅静, 赵永晶, 等. 流溪河大型底栖动物群落结构及其影响因素[J]. 中国环境监测, 2020, 36(3): 83-93. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202003013.htm YAO K S, HE Y J, ZHAO Y J, et al. Macrozoobenthos community structure and environmental determinants of the Liuxi River[J]. Environmental Monitoring in China, 2020, 36(3): 83-93. https://www.cnki.com.cn/Article/CJFDTOTAL-IAOB202003013.htm
[21] GRAA M A S, PINTO P, CORTES R, et al. Factors affecting macroinvertebrate richness and diversity in portuguese streams: a two-scale analysis[J]. International Review of Hydrobiology, 2004, 89(2): 151-164. doi: 10.1002/iroh.200310705
[22] SLOANE P I W, NORRIS R H. Relationships of AUSRIVAS-Basedmacroinvertebrate predictive model outputs to a metal pollution gradient[J]. Journal of the North American Benthological Society, 2003, 22(3): 457-471. doi: 10.2307/1468274
[23] 周玉春, 支崇远, 王路, 等. 柳江水体重金属污染健康风险评价[J]. 安徽农业科学, 2013, 41(10): 4370-4372, 4375. doi: 10.3969/j.issn.0517-6611.2013.10.050 ZHOU Y C, ZHI C Y, WANG L, et al. Health risk assessment of heavy metals pollution in Liujiang River[J]. Anhui Agricultural Sciences, 2013, 41(10): 4370-4372, 4375. doi: 10.3969/j.issn.0517-6611.2013.10.050
[24] 吴东浩, 于海燕, 吴海燕, 等. 基于大型底栖无脊椎动物确定河流营养盐浓度阈值——以西苕溪上游流域为例[J]. 应用生态学报, 2010, 21(2): 483-488. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201002035.htm WU D H, YU H Y, WU H Y, et al. Estimation of river nutrients the resholds based on benthic macroinvertebrate assemblages: a case study in the upper reaches of Xitiao Stream in Zhejiang, China[J]. Chinese Journal of Applied Ecology, 2010, 21(2): 483-488. https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201002035.htm
[25] 曹然, 黎征武, 刘威, 等. 广东北江大型底栖动物群落与水质相关性研究[J]. 华南师范大学学报(自然科学版), 2017, 49(2): 115-121. doi: 10.6054/j.jscnun.2017084 CAO R, LI Z W, LIU W, et al. Relationship between macrobenthos and water quality in Beijiang River Basin[J]. Journal of South China Normal University (Nature Science Edition), 2017, 49(2): 115-121. doi: 10.6054/j.jscnun.2017084
[26] DURAN M. Monitoring water quality using benthic macroinvertebrates and physicochemical parameters of Behzat Stream in Turkey[J]. Polish Journal of Environmental Studies, 2006, 15(5): 709-717. http://www.pjoes.com/pdf-87923-21782?filename=Monitoring%20Water%20Quality.pdf
[27] 张莹, 吕振波, 徐宗法, 等. 山东半岛南部海湾底栖动物群落生态特征及其与水环境的关系[J]. 生态学报, 2011, 31(15): 4455-4467. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201115032.htm ZHANG Y, LV Z B, XU Z F, et al. Ecological characteristics of macrobenthic communities and their relation to water environmental factors in fourbays of southern Shandong Peninsula[J]. Acta Ecologica Sinica, 2011, 31(15): 4455-4467. https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201115032.htm