Processing math: 100%

从属于指数函数的星像函数子类的四阶Hankel行列式

张海燕, 汤获, 马丽娜

张海燕, 汤获, 马丽娜. 从属于指数函数的星像函数子类的四阶Hankel行列式[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 84-90. DOI: 10.6054/j.jscnun.2021062
引用本文: 张海燕, 汤获, 马丽娜. 从属于指数函数的星像函数子类的四阶Hankel行列式[J]. 华南师范大学学报(自然科学版), 2021, 53(4): 84-90. DOI: 10.6054/j.jscnun.2021062
ZHANG Haiyan, TANG Huo, MA Lina. The Fourth-order Hankel Determinant for Certain Subclasses of Star-like Functions Subordinate to Exponential Function[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 84-90. DOI: 10.6054/j.jscnun.2021062
Citation: ZHANG Haiyan, TANG Huo, MA Lina. The Fourth-order Hankel Determinant for Certain Subclasses of Star-like Functions Subordinate to Exponential Function[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(4): 84-90. DOI: 10.6054/j.jscnun.2021062

从属于指数函数的星像函数子类的四阶Hankel行列式

基金项目: 

国家自然科学基金项目 11561001

内蒙古自治区青年科技英才支持计划项目 NJYT-18-A14

内蒙古自治区自然科学基金项目 2018MS01026

内蒙古自治区自然科学基金项目 2020MS01011

内蒙古自治区高校科研项目 NJZY20200

详细信息
    通讯作者:

    张海燕, Email: cfxyzhhy@163.com

  • 中图分类号: O174.5

The Fourth-order Hankel Determinant for Certain Subclasses of Star-like Functions Subordinate to Exponential Function

  • 摘要:A表示单位圆盘D={zC ∶ |z| < 1}内解析且具有如下形式 f(z)=z+n=2anzn 的函数族. 文章研究了在单位圆盘D上与指数函数有关的解析函数类Se*: Se={fzf(z)f(z)ez(fA,zD)} 的四阶Hankel行列式H4(1), 得到其上界估计.
    Abstract: Let A be a family of analytic functions with are the form f(z)=z+n=2anzn on the open unit disk D. A class of analytic functions Se* which are defined on the open unit cicle D and associated with exponential function is introduced, that is Se={fzf(z)f(z)ez(fA,zD)}. And the upper bound of the fourth-order Hankel determinant H4(1) for this function class Se* associated with exponential function is given.
  • 设$\mathcal{A} $表示单位圆盘D={z∈${\mathbb{C}} $: |z| < 1}内解析且具有如下形式

    $$ f(z)=z+\sum\limits_{n=2}^{\infty} a_{n} z^{n} $$ (1)

    的函数族.

    设$\mathcal{P} $表示单位圆盘D内满足条件p(0)=0及Re p(z)>0的函数p组成的解析函数族.

    1992年, MA和MINDA[1]引入某类星像函数类S*(ϕ):

    $$ f \in S^{*}(\phi) \Leftrightarrow \frac{z f^{\prime}(z)}{f(z)}\prec\phi(z), $$

    其中ϕ ∈$\mathcal{P} $. 该函数类将单位圆盘映射到关于实轴对称、关于ϕ(0)=1星像且满足ϕ′(0)>0的星像区域.

    1996年, SOKÓȽ和STANKIEWICZ[2]引入函数类S*($ \sqrt{1+z}$), 该函数类将单位圆盘映射为伯努利双纽线{w∈${\mathbb{C}} $: |w2-1| < 1}的右半部分星像区域.

    2014年, MENDIRATTA等[3]引入函数类S*$(\sqrt{2}- (\sqrt{2}-1) \sqrt{(1-z) /(1+2(\sqrt{2}-1)}))$, 该函数类将单位圆盘映射为伯努利双纽线{w ∈${\mathbb{C}} $: |w2-1| < 1}的左半部分星像区域.

    2015年, MENDIRATTA等[4]引入了与指数函数有关的函数类Se*, 该函数类将单位圆盘映射到关于实轴对称、关于1星像的右半平面区域.

    另一方面, 对于不同解析函数类的Hankel行列式研究一直是热点问题之一. 1966年, POMMERENKE[5]定义了解析函数fq阶Hankel行列式Hq(n). 很明显, 当q=2, n=1时, |H2(1)|即是Fekete-Szegö泛函[6-11]. 近年来, 许多学者对各类解析函数的二、三阶Hankel行列式做了大量研究[12-24]. 如: 研究了与指数函数有关的星像函数类的二、三阶Hangkel行列式[12-14]; 研究了有界转动、星像和凸像函数类的三阶Hankel行列式[15]; 研究了近于凸函数类的三阶Hankel行列式[17].

    但是, 目前对于与指数函数有关的函数类的Hankel行列式的研究都仅基于二阶和三阶的情形, 而对四阶Hankel行列式的研究还不多见. 基于以上启发, 本文主要研究了与指数函数有关的星像函数类的四阶Hankel行列式H4(1), 得到其上界估计.

    定义1[25]   设函数fg在单位圆盘D内解析. 如果存在D内的Schwarz函数ω, 满足: ω(0)=0, |ω(z)| < 1且f(z)=g(ω(z)), 则称f从属于g, 记为f$ \prec $g. 特别地, 如果gD上是单叶的, 则

    $$ f\prec g \quad(z \in D) \Leftrightarrow f(0)=g(0), f(D) \subset g(D) . $$

    设函数f(z)∈$\mathcal{A} $, 若满足条件: Re[zf′(z)/f(z)]>0, 则称f属于星像函数类, 记为fS*. 显然, fS*将单位圆盘映射到右半平面且星像的区域[1].

    定义2[4]   设Se*表示单位圆盘D={z: |z| < 1} 内满足

    $$ \frac{z f^{\prime}(z)}{f(z)}\prec\mathrm{e}^{z} \quad(z \in D, f \in \mathcal{A}) $$ (2)

    的解析函数类的全体. 实际上, fSe*当且仅当

    $$ \left|\log \frac{z f^{\prime}(z)}{f(z)}\right|<1 \quad(z \in D). $$

    定义3[5]   设函数f∈$\mathcal{S} $,

    $$ H_{q}(n)=\left|\begin{array}{cccc} a_{n} & a_{n+1} & \cdots & a_{n+q-1} \\ a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\ \vdots & \vdots & & \vdots \\ a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2} \end{array}\right| \quad\left(a_{1}=1\right), $$

    其中, a1=1, n≥1, q≥1. 特别地, 有

    $$ H_{4}(1)=\left|\begin{array}{cccc} a_{1} & a_{2} & a_{3} & a_{4} \\ a_{2} & a_{3} & a_{4} & a_{5} \\ a_{3} & a_{4} & a_{5} & a_{6} \\ a_{4} & a_{5} & a_{6} & a_{7} \end{array}\right| \quad(n=1, q=4) . $$

    下面给出本文所需用的引理.

    引理1[26]   如果$p(z)=1+\sum\limits_{k=1}^{\infty} c_{k} z^{k} \in \mathcal{P} $, 则存在复数xz,且|x|≤1, |z|≤1, 使得

    $$ 2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right) $$

    $$ 4 c_{3}=c_{1}^{3}+2 c_{1} x\left(4-c_{1}^{2}\right)-\left(4-c_{1}^{2}\right) c_{1} x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z. $$

    引理2[27]   如果$p(z)=1+\sum\limits_{k=1}^{\infty} c_{k} z^{k} \in \mathcal{P} $, 则

    $$\begin{array}{c} \left|c_{1}^{4}+c_{2}^{2}+2 c_{1} c_{3}-3 c_{1}^{2} c_{2}-c_{4}\right| \leqslant 2,\\\left|c_{1}^{5}+3 c_{1} c_{2}^{2}+3 c_{1}^{2} c_{3}-4 c_{1}^{3} c_{2}-2 c_{1} c_{4}-2 c_{2} c_{3}+c_{5}\right| \leqslant 2, \end{array} \\ \mid c_{1}^{6}+6 c_{1}^{2} c_{2}^{2}+4 c_{1}^{3} c_{3}+2 c_{1} c_{5}+2 c_{2} c_{4}+c_{3}^{2}-c_{2}^{3}-5 c_{1}^{4} c_{2}- \\ \ \ \ \ \ \ \ \ 3 c_{1}^{2} c_{4}-6 c_{1} c_{2} c_{3}-c_{6} \mid \leqslant 2 $$

    及|cn|≤2 (n=1, 2, …).

    引理3[28]   如果$p(z)=1+\sum\limits_{k=1}^{\infty} c_{k} z^{k} \in \mathcal{P} $, 那么对0≤μ≤1, 有

    $$\begin{array}{c} \left|c_{2}-\frac{c_{1}^{2}}{2}\right| \leqslant 2-\frac{\left|c_{1}\right|^{2}}{2},\\\left|c_{n+k}-\mu c_{n} c_{k}\right|<2,\\\left|c_{n+2 k}-\mu c_{n} c_{k}^{2}\right| \leqslant 2(1+2 \mu) . \end{array} $$

    下面给出本文的主要定理.

    定理1  若f(z)∈$\mathcal{S} $e*且具有式(1)的形式, 则

    $$ \begin{gathered} \left|a_{2}\right| \leqslant 1,\left|a_{3}\right| \leqslant \frac{3}{4},\left|a_{4}\right| \leqslant \frac{31}{72},\left|a_{5}\right| \leqslant \frac{1}{3}, \\ \left|a_{6}\right| \leqslant \frac{17}{60},\left|a_{7}\right| \leqslant \frac{59}{80}. \end{gathered} $$ (3)

    证明   设fSe*, 则由定义1和式(2), 易知

    $$ \frac{z f^{\prime}(z)}{f(z)}=\mathrm{e}^{\omega(z)}, $$

    其中, ω(z)是Schwarz函数, 满足ω(0)=0, |ω(z)| < 1, zD. 又

    $$ \begin{aligned} &\frac{z f^{\prime}(z)}{f(z)}=\frac{z+\sum\limits_{n=2}^{\infty} n a_{n} z^{n}}{z+\sum\limits_{n=2}^{\infty} a_{n} z^{n}}= \\ &\ \ \ \ \left(1+\sum\limits_{n=2}^{\infty} n a_{n} z^{n-1}\right)\left[1-a_{2} z+\left(a_{2}^{2}-a_{3}\right) z^{2}-\left(a_{2}^{3}-2 a_{2} a_{3}+\right.\right. \\ &\ \ \ \ \left.\left.a_{4}\right) z^{3}+\left(a_{2}^{4}-3 a_{2}^{2} a_{3}+2 a_{2} a_{4}-a_{5}\right) z^{4}+\cdots\right]=1+a_{2} z+ \\ &\ \ \ \ \left(2 a_{3}-a_{2}^{2}\right) z^{2}+\left(a_{2}^{3}-3 a_{2} a_{3}+3 a_{4}\right) z^{3}+\left(4 a_{5}-a_{2}^{4}+4 a_{2}^{2} a_{3}-\right. \\ &\ \ \ \ \left.4 a_{2} a_{4}-3 a_{3}^{2}\right) z^{4}+\left(5 a_{6}-5 a_{2} a_{5}+a_{2}^{5}-5 a_{3} a_{4}-5 a_{2}^{3} a_{3}+\right. \\ &\ \ \ \ \left.5 a_{2}^{2} a_{4}+5 a_{2} a_{3}^{2}\right) z^{5}+\left(6 a_{7}-6 a_{2} a_{6}+6 a_{2}^{2} a_{5}-6 a_{3} a_{5}+\right. \\ &\ \ \ \ 18 a_{2} a_{3} a_{4}-a_{2}^{6}-6 a_{2}^{3} a_{4}-3 a_{4}^{2}+2 a_{3}^{3}-9 a_{2}^{2} a_{3}^{2}+6 a_{2}^{4} a_{3}- \\ &\ \ \ \ \left.3 a_{2} a_{4}\right) z^{6}+\cdots. \end{aligned} $$ (4)

    $$ p(z)=\frac{1+\omega(z)}{1-\omega(z)}=1+c_{1} z+c_{2} z^{2}+\cdots \text {. } $$

    显然有p(z)∈$\mathcal{P} $且

    $$ \omega(z)=\frac{p(z)-1}{1+p(z)}=\frac{c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots}{2+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots}. $$ (5)

    由式(5)知,

    $$ \begin{aligned} \mathrm{e}^{\omega(z)} &=1+\frac{1}{2} c_{1} z+\left(\frac{c_{2}}{2}-\frac{c_{1}^{2}}{8}\right) z^{2}+\left(\frac{c_{1}^{3}}{48}+\frac{2 c_{3}-c_{1} c_{2}}{4}\right) z^{3}+\\ &\left(\frac{2 c_{4}-c_{1} c_{3}}{4}+\frac{c_{1}^{2} c_{2}}{16}-\frac{c_{2}^{2}}{8}+\frac{c_{1}^{4}}{384}\right) z^{4}+\\ &\left(\frac{2 c_{5}-c_{1} c_{4}-c_{2} c_{3}}{4}+\frac{c_{1}^{2} c_{3}+c_{1} c_{2}^{2}}{16}+\frac{c_{1}^{3} c_{2}}{96}-\frac{19 c_{1}^{5}}{3\,840}\right) z^{5}+\\ &\left(\frac{2 c_{6}-c_{1} c_{5}-c_{2} c_{4}}{4}+\frac{c_{1} c_{2} c_{3}}{8}+\frac{c_{2}^{3}}{48}-\frac{c_{3}^{2}}{8}+\frac{151 c_{1}^{6}}{46\,080}-\frac{19 c_{1}^{4} c_{2}}{768}+\right.\\ &\left.\frac{c_{1}^{2} c_{2}^{2}}{64}+\frac{c_{1}^{2} c_{4}}{16}+\frac{c_{1}^{3} c_{3}}{96}\right) z^{6}+\cdots. \end{aligned} $$ (6)

    分别比较式(4)、(6)两边关于zz2z3z4z5z6的系数, 可得

    $$ \begin{gathered} a_{2}=\frac{c_{1}}{2}, a_{3}=\frac{c_{2}}{4}+\frac{c_{1}^{2}}{16}, a_{4}=\frac{c_{3}}{6}+\frac{c_{1} c_{2}}{24}-\frac{c_{1}^{3}}{288},\\ a_{5}=\frac{c_{4}}{8}+\frac{c_{1} c_{3}}{48}+\frac{c_{1}^{4}}{1\,152}-\frac{c_{1}^{2} c_{2}}{96}, \\ a_{6}=\frac{c_{1} c_{4}}{80}-\frac{c_{2} c_{3}}{120}-\frac{17 c_{1}^{5}}{57\,600}+\frac{11 c_{1}^{3} c_{2}}{2\,880}+\frac{c_{1}^{2} c_{3}}{480}-\frac{c_{1} c_{2}^{2}}{120}+\frac{c_{5}}{10}, \\ \begin{aligned} a_{7}=&\frac{-13 c_{1}^{2} c_{4}}{1\ 920}-\frac{97 c_{1} c_{2} c_{3}}{2\ 880}+\frac{1\,781 c_{1}^{6}}{8\ 294\ 400}+\frac{7 c_{1}^{2} c_{2}^{2}}{11\ 520}-\frac{341 c_{1}^{4} c_{2}}{138\ 240}- \\ &\frac{c_{1} c_{5}}{120}-\frac{c_{2} c_{4}}{96}-\frac{c_{2}^{3}}{576}-\frac{c_{3}^{2}}{144}+\frac{c_{1} c_{3}}{24}+\frac{c_{6}}{12}+\frac{c_{1}^{2} c_{2}}{96}-\frac{c_{1}^{4}}{1\ 152}+ \\ &\frac{211 c_{1}^{3} c_{3}}{34\ 560} . \end{aligned} \end{gathered} $$ (7)

    由引理2, 易证|a2|=|c1/2|≤1. 而由引理1, 可得

    $$ \left|a_{3}\right|=\left|\frac{c_{2}}{4}+\frac{c_{1}^{2}}{16}\right|=\left|\frac{3 c_{1}^{2}}{16}+\frac{x\left(4-c_{1}^{2}\right)}{8}\right| $$

    设|x|=t (t∈[0, 1]), c1=c (c ∈[0, 2]), 则利用三角不等式, 得

    $$ \left|a_{3}\right| \leqslant \frac{t\left(4-c^{2}\right)}{8}+\frac{3 c^{2}}{16}. $$

    令$F(c, t)=\frac{t\left(4-c^{2}\right)}{8}+\frac{3 c^{2}}{16} $, 对任意的t ∈(0, 1), c ∈(0, 2), 有

    $$ \frac{\partial F}{\partial t}=\frac{4-c^{2}}{8}>0, $$

    F(c, t)在[0, 1]关于t是单调递增函数. 因此, F(c, t)在t=1取得最大值, 即

    $$ \max F(c, t)=F(c, 1)=\frac{4-c^{2}}{8}+\frac{3 c^{2}}{16}=\frac{1}{2}+\frac{c^{2}}{16}=G(c). $$

    易证G(c)在c=2处取得最大值, 即|a3|≤G(2)=3/4.

    $$ \left|a_{4}\right|=\left|\frac{c_{3}}{6}+\frac{c_{1} c_{2}}{24}-\frac{c_{1}^{3}}{288}\right|=\left|\frac{-49 c_{3}}{288}-\frac{c_{1} c_{2}}{48}+\frac{c_{1}^{3}-2 c_{1} c_{2}+c_{3}}{288}\right|. $$

    c1=c∈[0, 2], 则由引理2可得

    $$ \left|a_{4}\right|=\left|\frac{-49 c_{3}}{288}-\frac{c_{1} c_{2}}{48}+\frac{c_{1}^{3}-2 c_{1} c_{2}+c_{3}}{288}\right| \leqslant \frac{25}{72}+\frac{c}{24} \text {. } $$

    令$F(c)=\frac{25}{72}+\frac{c}{24} $, 易证F(c)在c=2处取得最大值, 即|a4|≤F(2)=31/72.

    类似地, 因为

    $$ \begin{aligned} \left|a_{5}\right|=&\left|\frac{c_{4}}{8}+\frac{c_{1} c_{3}}{48}+\frac{c_{1}^{4}}{1\,152}-\frac{c_{1}^{2} c_{2}}{96}\right|=\\ &\left|\frac{23 c_{1}}{1\,152}\left[c_{3}-\frac{10 c_{1} c_{2}}{23}\right]+\frac{c_{4}}{8}+\frac{c_{1}\left(c_{1}^{3}-2 c_{1} c_{2}+c_{3}\right)}{1\ 152}\right|, \end{aligned} $$

    故对c1=c∈[0, 2], 由引理2和引理3可得

    $$ \left|a_{5}\right| \leqslant \frac{1}{4}+\frac{c}{576}+\frac{23 c}{576}. $$

    令$F(c)=\frac{1}{4}+\frac{c}{24} $, 进而可得F(c)在c=2处取得最大值, 即|a5|≤F(2)=1/3.

    $$ \begin{aligned} \left|a_{6}\right|&=\left|\frac{c_{1} c_{4}}{80}-\frac{c_{2} c_{3}}{120}-\frac{17 c_{1}^{5}}{57\ 600}+\frac{11 c_{1}^{3} c_{2}}{2\ 880}+\frac{c_{1}^{2} c_{3}}{480}-\frac{c_{1} c_{2}^{2}}{120}+\frac{c_{5}}{10}\right|= \\ &\left| \frac{1}{20}\left[c_{5}-\frac{c_{1} c_{4}}{4}\right]+\frac{1}{20}\left[c_{5}-\frac{c_{3} c_{2}}{12}\right]-\frac{c_{3}}{240}\left[c_{2}-\frac{c_{1}^{2}}{2}\right]+ \right. \\ &\left.\frac{17 c_{1}^{3}}{28\ 800}\left[c_{2}-\frac{c_{1}^{2}}{2}\right]-\frac{c_{1} c_{2}}{120}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)-\frac{17 c_{1}^{3} c_{2}}{28\ 800}\right|. \end{aligned} $$

    c1=c∈[0, 2], 由引理3可得

    $$ \left|a_{6}\right| \leqslant \frac{1}{5}+\frac{17 c^{3}\left(2-c^{2} / 2\right)}{28\ 800}+\frac{5}{120}\left(2-\frac{c^{2}}{2}\right)+\frac{17 c^{3}}{14\ 400}. $$

    $$ F(c)=\frac{1}{5}+\frac{17 c^{3}\left(2-c^{2} / 2\right)}{28\ 800}+\frac{5}{120}\left(2-\frac{c^{2}}{2}\right)+\frac{17 c^{3}}{14\ 400}, $$

    $$ F^{\prime}(c)=\frac{17 c^{2}}{3\ 600}-\frac{17 c^{4}}{11\ 520}-\frac{c}{24}, $$

    因此, c=0是方程F′(c)=0的根. 又因为F″(0) < 0, 所以, F(c)在c=0处取得最大值, 即|a6|≤F(0)=17/60.

    $$ \begin{aligned} &\left|a_{7}\right|=\left|\frac{-13 c_{1}^{2} c_{4}}{1\ 920}-\frac{97 c_{1} c_{2} c_{3}}{2\ 880}+\frac{1\ 781 c_{1}^{6}}{8\ 294\ 400}+\frac{7 c_{1}^{2} c_{2}^{2}}{11\ 520}-\frac{341 c_{1}^{4} c_{2}}{138\ 240}-\right.\\ &\left.\frac{c_{1} c_{5}}{120}-\frac{c_{2} c_{4}}{96}-\frac{c_{2}^{3}}{576}-\frac{c_{3}^{2}}{144}+\frac{c_{1} c_{3}}{24}+\frac{c_{6}}{12}+\frac{c_{1}^{2} c_{2}}{96}-\frac{c_{1}^{4}}{1\ 152}+\frac{211 c_{1}^{3} c_{3}}{34\ 560}\right|=\\ &\left|\frac{1\ 781 c_{1}^{4}}{4\ 147\ 200}\left[c_{2}-c_{2}^{2}\right]+\frac{c_{1}^{2}}{576}\left[c_{2}-c_{1}^{2}\right]-\frac{13 c_{1}^{2}\left[c_{4}-\frac{211 c_{1} c_{3}}{234}\right]}{1\ 920}+\right.\\ &\left.\frac{\left[c_{6}-\frac{c_{2} c_{4}}{8}\right]}{12}+\frac{c_{1}\left[c_{5}-\frac{23}{24} c_{2} c_{3}\right]}{120}-\frac{37 c_{1} c_{2}\left[c_{3}-\frac{7 c_{1} c_{2}}{296}\right]}{1440}+\frac{5 c_{1}^{2} c_{2}}{576}-\right.\\ &\left.\frac{c_{2}^{3}}{576}-\frac{c_{3}^{2}}{144}+\frac{c_{1} c_{3}}{24} \right| . \end{aligned} $$

    c1=c∈[0, 2], 由引理2和引理3可知

    $$ \begin{aligned} &\left|a_{7}\right| \leqslant \frac{1}{6}+\frac{c}{60}+\frac{37 c}{360}+\frac{1\ 781 c^{4}\left(2-\frac{c^{2}}{2}\right)}{4\ 147\ 200}+\frac{c^{2}\left(2-\frac{c^{2}}{2}\right)}{576}+\frac{13 c^{2}}{960}+ \\ &\ \ \ \ \ \ \ \ \frac{1}{72}+\frac{1}{36}+\frac{5 c^{2}}{288}+\frac{c}{12} . \end{aligned} $$

    $$ \begin{aligned} F(c)=&\frac{1}{6}+\frac{c}{60}+\frac{37 c}{360}+\frac{1\ 781 c^{4}\left(2-\frac{c^{2}}{2}\right) c^{2}\left(2-\frac{c^{2}}{2}\right)}{4\ 147\ 200}+\frac{13 c^{2}}{576}+\frac{5}{960}+ \\ &\frac{1}{72}+\frac{1}{36}+\frac{5 c^{2}}{288}+\frac{c}{12}, \end{aligned} $$

    进而可得F′(c)≥0. 因此, F(c)在c=2处取得最大值, 即|a7|≤F(2)=59/80. 证毕.

    定理2    若fSe*且具有式(1)的形式, 则

    $$ \left|a_{3}-a_{2}^{2}\right| \leqslant \frac{1}{2} $$ (8)

    证明    通过式(7)可得

    $$ \left|a_{3}-a_{2}^{2}\right|=\left|\frac{c_{2}}{4}-\frac{3 c_{1}^{2}}{16}\right|, $$

    由引理1可知

    $$ \left|a_{3}-a_{2}^{2}\right|=\left|\frac{x\left(4-c_{1}^{2}\right)}{8}-\frac{c_{1}^{2}}{16}\right|. $$

    设|x|=t∈[0, 1], c1=c∈[0, 2], 则由三角不等式可得

    $$ \left|a_{3}-a_{2}^{2}\right| \leqslant \frac{t\left(4-c^{2}\right)}{8}+\frac{c^{2}}{16}. $$

    令$F(c, t)=\frac{t\left(4-c^{2}\right)}{8}+\frac{c^{2}}{16} $, 则对∀t ∈(0, 1), ∀c ∈(0, 2), 有

    $$ \frac{\partial F}{\partial t}=\frac{4-c^{2}}{8}>0 $$

    因此, F(c, t)在[0, 1]关于t是单调递增函数. 故F(c, t)在t=1处取得最大值, 即

    $$ \max F(c, t)=F(c, 1)=\frac{\left(4-c^{2}\right)}{8}+\frac{c^{2}}{16}=G(c) . $$

    同理易证G(c)在c=0处取得最大值, 即

    $$ \left|a_{3}-a_{2}^{2}\right| \leqslant G(0)=\frac{1}{2}. $$

    证毕.

    定理3    若fSe*且具有式(1)的形式, 则

    $$ \left|a_{2} a_{3}-a_{4}\right| \leqslant \frac{1}{3} $$ (9)

    证明   由式(7)可得

    $$ \begin{aligned} &\left|a_{2} a_{3}-a_{4}\right|=\left|\frac{c_{1} c_{2}}{8}+\frac{5 c_{1}^{3}}{144}-\frac{c_{3}}{6}+\frac{c_{1} c_{2}}{12}\right|= \\ &\ \ \ \ \ \ \ \ \left|\frac{5\left(c_{1}^{3}-2 c_{1} c_{2}+c_{3}\right)}{144}-\frac{29\left[c_{3}-\frac{22}{29} c_{1} c_{2}\right]}{144}\right| . \end{aligned} $$

    由引理2和引理3可得

    $$ \left|a_{2} a_{3}-a_{4}\right| \leqslant \frac{5}{72}+\frac{29}{72}=\frac{17}{36}. $$

    证毕.

    定理4    若fSe*且具有式(1)的形式, 则

    $$ \left|a_{2} a_{4}-a_{3}^{2}\right| \leqslant \frac{1}{4}. $$ (10)

    证明    由式(7)可得

    $$ \left|a_{2} a_{4}-a_{3}^{2}\right|=\left|\frac{c_{1} c_{3}}{12}-\frac{c_{1}^{2} c_{2}}{48}-\frac{c_{1}^{4}}{288}-\frac{c_{2}^{2}}{16}\right|. $$

    由引理1可得

    $$ \begin{aligned} &\left|a_{2} a_{4}-a_{3}^{2}\right|=\left|\frac{c_{1} c_{3}}{12}-\frac{c_{1}^{2} c_{2}}{48}-\frac{c_{1}^{4}}{288}-\frac{c_{2}^{2}}{16}\right|= \\ &\ \ \ \ \left|-\frac{5 c_{1}^{4}}{576}-\frac{x^{2} c_{1}^{2}\left(4-c_{1}^{2}\right)}{48}-\frac{x^{2}\left(4-c_{1}^{2}\right)^{2}}{64}+\frac{c_{1}\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z}{24}\right| . \end{aligned} $$

    设|x|=t∈[0, 1], c1=c∈[0, 2], 则由三角不等式可得

    $$ \begin{aligned} &\left|a_{2} a_{4}-a_{3}^{2}\right| \leqslant \frac{t^{2} c^{2}\left(4-c^{2}\right)}{48}+\frac{\left(1-t^{2}\right) c\left(4-c^{2}\right)}{24}+ \\ &\ \ \ \ \ \frac{t^{2}\left(4-c^{2}\right)^{2}}{64}+\frac{5 c^{4}}{576}. \end{aligned} $$

    $$ F(c, t)=\frac{t^{2} c^{2}\left(4-c^{2}\right)}{48}+\frac{\left(1-t^{2}\right) c\left(4-c^{2}\right)}{24}+\frac{t^{2}\left(4-c^{2}\right)^{2}}{64}+\frac{5 c^{4}}{576}, $$

    则对∀t∈(0, 1), ∀c∈(0, 2), 有

    $$ \frac{\partial F}{\partial t}=\frac{t\left(c^{2}-8 c+12\right)\left(4-c^{2}\right)}{96}>0. $$

    因此, F(c, t)在[0, 1]上关于t是单调递增函数, 从而可得F(c, t)在t=1处取得最大值, 即

    $$ \max F(c, t)=F(c, 1)=\frac{c^{2}\left(4-c^{2}\right)}{48}+\frac{\left(4-c^{2}\right)^{2}}{64}+\frac{5 c^{4}}{576}. $$

    $$ G(c)=\frac{c^{2}\left(4-c^{2}\right)}{48}+\frac{\left(4-c^{2}\right)^{2}}{64}+\frac{5 c^{4}}{576} , $$

    $$ G^{\prime}(c)=\frac{c\left(4-c^{2}\right)}{24}-\frac{c^{3}}{24}-\frac{c\left(4-c^{2}\right)}{16}+\frac{5 c^{3}}{144} . $$

    G′(c)=0, 则c=0. 又因为G″(0)=-1/12 < 0, 故G(c)在c=0处取得最大值, 即|a2a4-a32|≤G(0)=1/4.证毕.

    定理5    若fSe*且具有式(1)的形式, 则

    $$ \left|a_{2} a_{5}-a_{3} a_{4}\right| \leqslant \frac{73}{144} $$ (11)

    证明    若f(z)∈$\mathcal{S} $e*, 则由式(7)可得

    $$ \begin{aligned} &\left|a_{2} a_{5}-a_{3} a_{4}\right|=\left|\frac{-c_{1}^{5}}{1\ 536}-\frac{c_{1} c_{4}}{16}+\frac{c_{1} c_{2}^{2}}{96}+\frac{c_{1}^{3} c_{2}}{144}+\frac{c_{2} c_{3}}{24}\right|= \\ &\ \ \ \ \ \ \ \ \left| \frac{c_{1}^{3}\left[c_{2}-\frac{c_{1}^{2}}{2}\right]}{144}+ \frac{c_{2}\left[c_{3}-\frac{c_{1} c_{2}}{2}\right]}{24} -\frac{c_{1}\left[c_{4}-\frac{c_{1}^{2}}{2}\right]}{16}+\frac{13 c_{1}^{5}}{4\ 608}\right| . \end{aligned} $$

    c1=c∈[0, 2], 由引理3可得

    $$ \left|a_{2} a_{5}-a_{3} a_{4}\right| \leqslant \frac{c^{3}\left[2-\frac{c^{2}}{2}\right]}{144}+\frac{1}{6}+\frac{13 c^{5}}{4\ 608}+\frac{c}{8} \text {. } $$

    $$ F(c)=\frac{c^{3}\left[2-\frac{c^{2}}{2}\right]}{144}+\frac{1}{6}+\frac{13 c^{5}}{4\ 608}+\frac{c}{8}, $$

    则对∀c∈(0, 2), 有

    $$ F^{\prime}(c)=\frac{c^{2}}{24}-\frac{5 c^{4}}{1\ 536}+\frac{1}{8}>0 . $$

    因此, F(c)关于c单调递增, 故F(c)在c=2处取得最大值, 即

    $$ \left|a_{2} a_{5}-a_{3} a_{4}\right| \leqslant F(2)=\frac{73}{144}. $$

    证毕.

    定理6    若fSe*且具有式(1)的形式, 则

    $$ \left|a_{5}-a_{2} a_{4}\right| \leqslant \frac{35}{96}. $$ (12)

    证明   若f(z)∈$\mathcal{S} $e*, 则由式(7)可得

    $$ \begin{aligned} &\left|a_{5}-a_{2} a_{4}\right|=\left|\frac{c_{1}^{4}}{384}-\frac{c_{1} c_{3}}{16}-\frac{c_{1}^{2} c_{2}}{32}+\frac{c_{4}}{8}\right|= \\ &\qquad\left|\frac{c_{1}\left[c_{1}^{3}-2 c_{1} c_{2}+c_{3}\right]}{384}+\frac{5 c_{1}\left[c_{3}-c_{1} c_{2}\right]}{192}-\frac{\left[c_{4}-\frac{35}{48} c_{1} c_{3}\right]}{8}\right|. \end{aligned} $$

    c1=c∈[0, 2], 由引理2和引理3可得

    $$ \left|a_{5}-a_{2} a_{4}\right| \leqslant \frac{c}{192}+\frac{5 c}{96}+\frac{1}{4} . $$

    令$F(c)=\frac{1}{4}+\frac{11 c}{192} $, 则易证F(c)在c=2处取得最大值, 即

    $$ \left|a_{5}-a_{2} a_{4}\right| \leqslant F(2)=\frac{35}{96}. $$

    证毕.

    定理7    若fSe*且具有式(1)的形式, 则

    $$ \left|a_{5} a_{3}-a_{4}^{2}\right| \leqslant \frac{121}{216}. $$ (13)

    证明    若f(z)∈$\mathcal{S} $e*, 则由式(7)可得

    $$ \begin{aligned} &\left|a_{5} a_{3}-a_{4}^{2}\right|=\left| \frac{-c_{1}^{4} c_{2}}{6\ 912}+\frac{c_{2} c_{4}}{32}-\frac{5 c_{1} c_{2} c_{3}}{576}+\frac{17 c_{1}^{3} c_{3}}{6\ 912}-\frac{5 c_{1}^{2} c_{2}^{2}}{1\ 152}-\frac{c_{3}^{2}}{36}+\right. \\ &\ \ \ \ \left.\frac{c_{1}^{2} c_{4}}{128}+\frac{7 c_{1}^{6}}{165\ 888}\right|=\left| \frac{c_{3}\left[c_{3}-\frac{5 c_{1} c_{2}}{16}\right] c_{4}\left[c_{2}-\frac{c_{1}^{2}}{2}\right]}{36}+\frac{c_{3}^{2}}{32}- \right.\\ &\ \ \ \ \left.\frac{7 c_{1}^{4}\left[c_{2}-\frac{c_{1}^{2}}{2}\right]}{82\ 944}+\frac{17 c_{1}^{3}\left[c_{3}-\frac{5}{204} c_{1} c_{2}\right]}{6\ 912}+\frac{3 c_{1}^{2}\left[c_{4}-\frac{5 c_{2}^{2}}{27}\right]}{128}-\frac{c_{3}^{2}}{18}\right|. \end{aligned} $$

    c1=c∈[0, 2], 由引理3可得

    $$ \left|a_{5} a_{3}-a_{4}^{2}\right| \leqslant \frac{1}{9}+\frac{2}{9}+\frac{\left[2-\frac{c^{2}}{2}\right]}{16}+\frac{7 c^{4}\left[2-\frac{c^{2}}{2}\right]}{82\ 944}+\frac{17 c^{3}}{3\ 456}+\frac{3 c^{2}}{64} \text {. } $$

    $$ F(c)=\frac{1}{9}+\frac{2}{9}+\frac{\left[2-\frac{c^{2}}{2}\right]}{16}+\frac{7 c^{4}\left[2-\frac{c^{2}}{2}\right]}{82\ 944}+\frac{17 c^{3}}{3\ 456}+\frac{3 c^{2}}{64}, $$

    则对∀c∈(0, 2), 有

    $$ F^{\prime}(c)=\frac{c}{32}+\frac{17 c^{2}}{1\ 152}+\frac{7 c^{3}}{10\ 368}-\frac{7 c^{5}}{27\ 648}>0 . $$

    因此, F(c)关于c单调递增, 故F(c)在c=2处取得最大值, 即

    $$ \left|a_{5} a_{3}-a_{4}^{2}\right| \leqslant F(2)=\frac{121}{216}. $$

    证毕.

    定理8    若fSe*且具有式(1)的形式, 则

    $$ \left|H_{4}(1)\right| \leqslant \frac{52\ 253\ 339}{55\ 987\ 200} \approx 0.933\ 3. $$ (14)

    证明    因为

    $$ \begin{aligned} H_{4}&(1)=a_{7}\left\{a_{3}\left(a_{2} a_{4}-a_{3}^{2}\right)-a_{4}\left(a_{4}-a_{2} a_{3}\right)+a_{5}\left(a_{3}-a_{2}^{2}\right)\right\}- \\ &a_{6}\left\{a_{3}\left(a_{2} a_{5}-a_{3} a_{4}\right)-a_{4}\left(a_{5}-a_{2} a_{4}\right)+a_{6}\left(a_{3}-a_{2}^{2}\right)\right\}+ \\ &a_{5}\left\{a_{3}\left(a_{3} a_{5}-a_{4}^{2}\right)-a_{5}\left(a_{5}-a_{2} a_{4}\right)+a_{6}\left(a_{4}-a_{2} a_{3}\right)\right\}- \\ &a_{4}\left\{a_{4}\left(a_{3} a_{5}-a_{4}^{2}\right)-a_{5}\left(a_{2} a_{5}-a_{3} a_{4}\right)+a_{6}\left(a_{4}-a_{2} a_{3}\right)\right\}, \end{aligned} $$

    所以, 由三角不等式可得

    $$ \begin{aligned} &\left|H_{4}(1)\right| \leqslant\left|a_{7}\right|\left|a_{3}\right|\left|a_{2} a_{4}-a_{3}^{2}\right|+\left|a_{7}\right|\left|a_{4}\right|\left|a_{4}-a_{2} a_{3}\right|+\\ &\ \ \ \ \left|a_{7}\right|\left|a_{5}\right|\left|a_{3}-a_{2}^{2}\right|+\left|a_{6}\right|\left|a_{3}\right|\left|a_{2} a_{5}-a_{3} a_{4}\right|+ \\ &\ \ \ \ \left|a_{6}\right|\left|a_{4}\right|\left|a_{5}-a_{2} a_{4}\right|+\left|a_{6}\right|^{2}\left|a_{3}-a_{2}^{2}\right|+ \\ &\ \ \ \ \left|a_{5}\right|\left|a_{3}\right|\left|a_{3} a_{5}-a_{4}^{2}\right|+\left|a_{5}\right|^{2}\left|a_{5}-a_{2} a_{4}\right|+ \\ &\ \ \ \ \left|a_{5}\right|\left|a_{6}\right|\left|a_{4}-a_{2} a_{3}\right|+\left|a_{4}\right|^{2}\left|a_{3} a_{5}-a_{4}^{2}\right|+ \\ &\ \ \ \ \left|a_{4}\right|\left|a_{5}\right|\left|a_{2} a_{5}-a_{3} a_{4}\right|+\left|a_{4}\right|\left|a_{6}\right|\left|a_{4}-a_{2} a_{3}\right|. \end{aligned} $$ (15)

    将式(3)、(8)~(13)代入到式(15), 即得式(14). 证毕.

  • [1]

    MA W C, MINDA D. A unified treatment of some special classes of univalent functions[C]//Proceedings of the International Conference on Complex Analysis at the Nankai Institute of Mathematics. Tianjin: [s. n. ], 1992: 157-169.

    [2]

    SOKÓȽ J, STANKIEWICZ J. Radius of convexity of some subclasses of strongly starlike functions[J]. Zeszyty Naukowe Politechniki Rzeszowskiej Matematyka, 1996, 19: 101-105. http://www.researchgate.net/profile/Janusz_Sokol/publication/267137022_Radius_of_convexity_of_some_subclasses_of_strongly_starlike_functions/links/54980b460cf2c5a7e3428aad.pdf

    [3]

    MENDIRATTA R, NAGPAL S, RAVICHANDRAN V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli[J]. International Journal of Mathematics, 2014, 25(9): 1-17.

    [4]

    MENDIRATTA R, NAGPAL S, RAVICHANDRAN V. On a subclass of strongly starlike functions associated with exponential function[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38: 365-386. doi: 10.1007/s40840-014-0026-8

    [5]

    POMMERENKE C H. On the coeffcients and Hankel determinants of univalent functions[J]. Journal of London Mathematical Society, 1966, 41: 111-122.

    [6]

    FEKETE M, SZEGÖ G. Eine benberkung über ungerada schlichte funktionen[J]. Journal of the London Mathematical Society, 1933, 8(2): 85-89. doi: 10.1112/jlms/s1-8.2.85/abstract

    [7]

    KOEPF W. On the Fekete-Szegö problem for close-to-convex functions[J]. American Mathematical Society, 1987, 101: 89-95.

    [8]

    KOEPF W. On the Fekete-Szegö problem for close-to-convex functions Ⅱ[J]. Archiv Der Mathematik, 1987, 49: 420-433. doi: 10.1007/BF01194100

    [9]

    SRIVASTAVA H M, HUSSAIN S A, RAZA M, et al. The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination[J]. Carpathian Journal of Mathematics, 2018, 34(1): 103-113. doi: 10.37193/CJM.2018.01.11

    [10]

    SRIVASTAVA H M, MISHRA A K, DAS M K. The Fekete-Szegö problem for a subclass of close-to-convex functions[J]. Complex Variables, Theory and Application, 2001, 44(2): 145-163. doi: 10.1080/17476930108815351

    [11]

    TANG H, SRIVAATAVA H M, SIVASUBRAMANIAN S, et al. The Fekete-Szegö functional problems for some classes of m-fold symmetric bi-univalent functions[J]. Journal of Mathematical Inequalities, 2016, 10(4): 1063-1092.

    [12]

    ZHANG H Y, TANG H, NIU X M. Third-order Hankel determinant for certain class of analytic functions related with exponential function[J]. Symmetry, 2018, 10(10): 501-508. doi: 10.3390/sym10100501

    [13]

    SHI L, SRIVASTAVA H M, ARIF M, et al. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function[J]. Symmetry, 2019, 11(5): 598-611. doi: 10.3390/sym11050598

    [14]

    ZAPRAWA P. Hankel determinants for univalent functions related to the exponential function[J]. Symmetry, 2019, 11(10): 1211-1220. doi: 10.3390/sym11101211

    [15]

    BABALOLA K O. On H3(1) Hankel determinant for some classes of univalent functions[J]. Inequality Theory and Applications, 2010, 6: 1-7. http://arxiv.org/abs/0910.3779

    [16]

    BANSAL D. Upper bound of second Hankel determinant for a new class of analytic functions[J]. Applied Mathematics Letters, 2013, 26(1): 103-107. doi: 10.1016/j.aml.2012.04.002

    [17]

    BANSAL D, MAHARANA S, PRAJAPAT J K. Third order Hankel determinant for certain univalent functions[J]. Journal of Korean Mathematical Society, 2015, 52(6): 1139-1148. doi: 10.4134/JKMS.2015.52.6.1139

    [18]

    ÇAǦLAR M, DENİZ E, SRIVASTAVA H M. Second Hankel determinant for certain subclasses of bi-univalent functions[J]. Turkish Journal of Mathematics, 2017, 41: 694-706. doi: 10.3906/mat-1602-25

    [19]

    JANTENG A, HALIM S A, DARUS M. Coefficient in-equality for a function whose derivative has a positive real part[J]. Journal of Inequalities in Pure and Applied, 2006, 7(2): 50/1-5.

    [20]

    JANTENG A, HALIM S A, DARUS M. Hankel determinant for starlike and convex functions[J]. International Journal of Mathematics Analysis, 2007, 13(1): 619-625.

    [21]

    LEE S K, RAVICHANDRAN V, SUBRAMANIAM S. Bou-nds for the second Hankel determinant of certain univalent functions[J]. Journal of Inequalities and Applications, 2013, 2013(281): 1-17.

    [22]

    RAZA M, MALIK S N. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of bernoulli[J]. Journal of Inequalities and Applications, 2013, 2013(412): 1-8.

    [23]

    SRIVASTAVA H M, ALTINKAYA S, YALCIN S. Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator[J]. Filomat, 2018, 32(2): 503-516. doi: 10.2298/FIL1802503S

    [24] 张海燕, 汤获, 马丽娜. 一类解析函数的三阶Hankel行列式的上界估计[J]. 纯粹数学与应用数学, 2017, 33(2): 211-220. doi: 10.3969/j.issn.1008-5513.2017.02.013

    ZHANG H Y, TANG H, MA L N. Upper bound of third Hankel determinant for a class of analytic functions[J]. Pure and Applied Mathematics, 2017, 33(2): 211-220. doi: 10.3969/j.issn.1008-5513.2017.02.013

    [25]

    DUREN P L. Harmonic mappings in plane[M]. New York: Cambridge University Press, 2004.

    [26]

    LIBERA R J, ZLOTKIEWICZ E J. Coefficient bounds for the inverse of a function with derivative in P[J]. Proceedings of the American Mathematica, 1983, 87(2): 251-257.

    [27]

    RAVICHNDRAN V, VERMA S. Bound for the fifth coeffcient of certain starlike functions[J]. Comptes Rendus Mathematique, 2015, 353(6): 505-510. doi: 10.1016/j.crma.2015.03.003

    [28]

    POMMERENKE C. Univalent functions[M]. Providence: American Mathematical Society, 1975.

  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  476
  • HTML全文浏览量:  223
  • PDF下载量:  63
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-11-29
  • 网络出版日期:  2021-09-02
  • 刊出日期:  2021-08-24

目录

/

返回文章
返回