The Subdirect Sum of Strictly Diagonally Dominant Tensors
-
摘要: 根据张量与矩阵之间的联系,将方阵子直和及S-严格对角占优矩阵的概念推广到张量上,给出了张量子直和与S-严格对角占优型张量的定义,用分类讨论的方法证明2个严格对角占优张量的子直和仍然为严格对角占优张量,并讨论了S-严格对角占优型张量的情形,给出2个张量的子直和为S-严格对角占优型张量的条件.Abstract: The concept of subdirect sum of square matrices is extended to tensors according to the relation between matrix and tensor. The definitions of subdirect sum of tensors and S-strictly diagonally dominant tensors are given. It is proved, with the method of classification, that the subdirect sum of two strictly diagonally dominant tensors is also a strictly diagonally dominant tensor. Moreover, the condition ensuring that the subdirect sum of two tensors is the S-strictly diagonally dominant tensor is also given.
-
Keywords:
- subdirect sum /
- tensor /
- strictly diagonally dominant
-
矩阵作为代数学中的一个基本内容,已在科学和工程的各个方面得到广泛应用. 随着大数据分析的发展,人们对张量的研究日益增加. 目前,有关张量的研究成果已较为丰富[1-5]. 此处所提的张量也可以称作超矩阵,相比于矩阵元素有2个下标,张量元素的下标个数可以大于2个. 鉴于矩阵与张量之间的联系,许多矩阵理论中的内容已被推广到张量上进行研究,如严格对角占优矩阵[6]、特征值[1]、正定性[1]和Perron-Frobenius定理[7]等.
方阵的子直和是矩阵和的一种推广,FALLAT和JOHNSON[8]给出了方阵子直和的定义,并对其性质进行研究. 方阵子直和在矩阵的完备化[9]、区域分解方法中的重叠子域[10]等问题中均有涉及. 目前关于方阵子直和的研究已有许多结果[8, 11-17].
本文利用矩阵与张量之间的维数关系,定义了张量子直和与S-严格对角占优型张量,证明了严格对角占优张量的k-子直和是严格对角占优张量,并给出了张量的子直和为S-严格对角占优型张量的一个充分条件.
1. 张量的子直和
对于一个正整数n (≥2),如果ai1i2…im∈R (ij=1, 2, …, n; j=1, 2, …, m),则A=(ai1i2…im)称为一个m阶n维实张量,记为A∈R[m, n].
为了讨论方便,引入下列符号:[n]={1, 2, …, n};S⊆[n]且S≠Ø, riS(A)=∑j≠i,j∈S|aij|, ΔS={(i2i3…im)|ij ∈S,j=2,…,m;riΔS(A)=∑(i2⋯im)∈ΔSδii2⋯im=0|aii2⋯im|;当i1=i2= …=im时,δi1i2…im=1,当i1, i2, …, im不全相等时,δi1i2…im=0.
下面先给出几个定义.
定义1[8] 设方阵A和B的阶分别为n1和n2,k为整数且满足1≤k≤min{n1,n2}. 如果
A=[A11A12A21A22],B=[B11B12B21B22], 其中A22和B11均为k阶方阵,那么
C=[A11A120A21A22+B11B120B21B22] 称为A和B的k-子直和,记为C=A⊕k B.
定义2[11] 设矩阵A =(aij)∈Cn×n,n≥2,S是集合[n]的一个非空子集,如果以下2个条件成立:
(i)|aii|>riS(A),∀i∈S;
(ii) (|aii|-riS(A))(|ajj| -rjS(A))>riS(A)rjS(A),∀i ∈S,∀j∈ S,
则称A是S-严格对角占优矩阵,简记为S-SDD矩阵.
定义3[18] 设张量A=(ai1i2…im)∈R[m, n],如果对于所有的i∈[n],有
aii⋯i>∑i2,⋯,im∈[n]|aii2⋯im|−aii⋯i, 则称A是严格对角占优张量,简记为SDD张量.
由定义1和定义2,利用矩阵与张量之间的联系,可定义张量子直和与S-SDD型张量:
定义4 设张量A=(ai1i2…im)∈R[m, n1],B=(bi1i2…im)∈R[m, n2],n1, n2≥2,n=n1+n2-k,k为整数且1≤k≤min(n1, n2),t=m-k,令
ci1i2⋯im={ai1i2⋯im ((i1i2⋯im)∈ΔS1∪S2/ΔS2),ai1i2⋯im+bi1−t,i2−t,⋯,im−t ((i1i2⋯im)∈ΔS2),bi1−t,i2−t,⋯im−t((i1i2⋯im)∈ΔS2∪S3/ΔS2),0((i1i2⋯im)∈(Δ[n]/ΔS1∪S2)∪(Δ[n]/ΔS2∪S3)), 其中,S1={1, 2, …, n1-k},S2={n1-k+1, …, n1},S3={n1+1, …, n},则张量C=(ci1i2…im)∈R[m, n]称为A与B的k-子直和,记为C=A⊕k B.
定义5 设张量A=(ai1i2…im)∈R[m, n],n≥2,S是集合[n]的一个非空子集,如果以下2个条件成立:
(i)|ai…i|>riΔS(A),∀i∈S;
(ii) (|ai…i|-riΔS(A))(|aj…j|-rjΔS(A))>riΔS (A)×rjΔS(A),∀i∈S,∀j∈ S,
则称A是S-严格对角占优型张量,简记为S-SDD型张量.
2. SDD张量和S-SDD型张量的子直和
本节证明2个SDD张量的子直和仍然是SDD张量,以及1个SDD张量与1个S-SDD型张量的子直和是S-SDD型张量.
定理 1 设张量A=(ai1i2…im)∈R[m, n1],B=(bi1i2…im)∈R[m, n2]都是SDD张量,k为整数,且1≤ k≤min(n1, n2),n1, n2≥2,n=n1+n2-k. 如果aii…ibjj…j>0,i∈S2,j∈[k],则A与B的k-子直和C=A⊕k B是SDD张量.
证明 分3种情形证明.
情形1. 当i1 ∈S1时,有
ci1i2⋯im={ai1i2⋯im ((i2⋯im)∈ΔS1∪S2),0 ((i2⋯im)∉ΔS1∪S2), 则
ci1i1⋯i1=ai1i1⋯i1>∑(i2⋯im)∈ΔS1∪S2|ai1i2⋯im|−ai1i1⋯i1=∑(i2⋯im)∈[n]|ci1i2⋯im|−ci1i1⋯i1. 情形2. 当i1 ∈S2时,因为A和B是SDD张量,所以
ai1i1⋯i1>∑(i2⋯im)∈ΔS1∪S2|ai1i2⋯im|−ai1i1⋯i1, (1) bi1−t,i1−t,⋯,i1−t>∑(i2⋯im)∈ΔS2∪S3|bi1−t,i2−t,⋯,im−t|− bi1−t,i1−t,⋯,i1−t⋅ (2) 根据定义4,有
ci1i1⋯i1=ai1i1⋯i1+bi1−t,i1−t,⋯,i1−t. (3) 由式(1)~(3),可知
ci1i1⋯i1>∑(i2⋯im)∈ΔS1∪S2|ai1i2⋯im|−ai1i1⋯i1+ ∑(i2⋯im)∈ΔS2∪S3|bi1−t,i2−t,⋯,im−t|−bi1−t,i1−t,⋯,i1−t= ∑(i2⋯im)∈ΔS1∪S2|ai1i2⋯im|+∑(i2⋯im)∈ΔS2∪S3|bi1−t,i2−t,⋯,im−t|− ci1i1⋯i1=∑(i2⋯im)∈Δ[n]|ci1i2⋯im|−ci1i1⋯i1. 情形3. 当i1 ∈S3时,有
ci1i2⋯im={bi1−t,i2−t,⋯,im−t ((i2⋯im)∈ΔS2∪S3),0 ((i2⋯im)∉ΔS2∪S3), 则
ci1i1⋯i1=bi1−t,i1−t,⋯,i1−t>∑(i2⋯im)∈ΔS1∪S2|bii2⋯im|−bi1−t,i1−t,⋯,i1−t=∑(i2⋯il)∈[n]|cii2⋯im|−ci1i1⋯i1. 综上所述,当i1 ∈S1∪S2∪S3时,有
ci1i1⋯i1>∑(i2⋯im)∈[n]|cii2⋯im|−ci1i1⋯i1, 因此,C= A ⊕k B是SDD张量.
定理1表明2个SDD张量的子直和仍然是SDD张量,但是,2个S-SDD型张量的子直和不一定是S-SDD型张量.
A(:,:,1)=(2.60.10.10.020.10.20.10.020.10.10.20.030.020.030.030.04),A(:,:,2)=(0.400.10.102.60.10.10.10.10.10.10.10.10.10.1),A(:,:,3)=(0.60.200.10.20.300.1002.20.20.10.10.20.2),A(:,:,4)=(0.80.20.100.20.30.100.10.10.100002.2). 令S={1, 2},则张量A是S-SDD型张量. 但是2-子直和C=A⊕2 A不是S-SDD型张量,此时定义5中的条件(ii)不成立,因为,当i=1,j=5时,有
(|c111|−rΔS1(C))(|c555|−rΔˉS5(C))=−0.22<0= rΔˉS1(C)rΔS5(C). 下面给出2个张量的子直和为S-SDD型张量的一个条件.
定理 2 设张量A=(ai1i2…im)∈R[m, n1]是S-SDD型张量,张量B=(bi1i2…im)∈R[m, n2]是SDD张量,S是S1的一个非空子集,n1, n2≥2,k为整数且1≤k≤min(m, n),集合S1、S2、S3与定义4中的相同. 如果aii…ibjj…j>0,i∈S2,j∈[k],则k-子直和C=A⊕k B是S-SDD型张量.
证明 先证明S=S1时的情形. 要证明张量C是S-SDD型张量,需证明以下2个条件成立:
(i) |ci…i| ≥riΔS(C),∀i∈S;
(ii) (|ci…i|-riΔS(C))(|cj…j|-rjΔS(C))≥riΔS(C)rjΔS(C),∀i∈S,∀j∈ S.
当S=S1时,S在[n1+n2-k]中的补集为S2∪S3.
(1) 因为A是S-SDD型张量,有|ai…i|>riΔS(A) (i∈S),则
|ci⋯i|=|ai⋯i|>rΔSi(A)=rΔSi(C)(i∈S). 从而条件(i)成立.
(2) 下面分2种情形证明条件(ii)成立.
① 当j∈S2时,由i∈S=S1,有
rΔSi(C)=rΔSi(A),rΔSj(C)=rΔSj(A),rΔˉSi(C)=rΔˉSi(A),rΔˉSj(C)=rΔˉSj(A)+rj−t(B),t=n1−k. 因为A是S-SDD型张量,B是SDD张量,则∀i∈S,∀j∈ S,有
(|ai⋯i|−rΔSi(A))(|aj⋯j|−rΔˉSj(A))>rΔˉSi(A)rΔSj(A), 且|bi…i|>ri(B) (i∈[n2]). 从而
(|ci⋯i|−rΔSi(C))(|cj⋯j|−rΔˉSj(C))=(|ai⋯i|−rΔSi(A))× (|aj⋯j+bj−t,⋯,j−t|−rΔˉSj(A)−rj−t(B))= (|ai⋯i|−rΔSi(A))((|aj⋯j|−rΔˉSj(A))+ (|bj−t,⋯,j−t|−rj−t(B)))>(|ai⋯i|−rΔSi(A))× (|aj⋯j|−rΔˉSj(A))>rΔˉSi(A)rΔSj(A)=rΔˉSi(C)rΔSj(C). 由此可知当j∈S2时,条件(ii)成立.
② 当j∈S3时,由i ∈S=S1,有rjΔS(C)=0,rjΔS(C)=rj-tΔS(B),从而
(|ci⋯i|−rΔSi(C))(|cj⋯j|−rΔˉSj(C))= (|ai⋯i|−rΔSi(A))(|bj−t,⋯,j−t|−rΔˉSj−t(B))> rΔˉSi(C)rΔSj(C). 综上所述,当S=S1时,结论成立.
当|S| < |S1|时,证明过程类似. 由此可知,C是S-SDD型张量.
-
[1] QI L Q. Eigenvalues of a real supersymmetric tensors[J]. Journal of Symbolic Computation, 2005, 40(6): 1302-1324. doi: 10.1016/j.jsc.2005.05.007
[2] CHANG K C, PEARSON K, ZHANG T. Perron-Frobenius theorem for nonnegative tensors[J]. Communications in Mathematical Sciences, 2008, 6(2): 507-520. doi: 10.4310/CMS.2008.v6.n2.a12
[3] NG M, QI L Q, ZHOU G L. Finding the largest eigenvalue of a nonnegative tensor[J]. Siam Journal on Matrix Analy-sis and Applications, 2009, 31 (3): 1090-1099.
[4] CUI C F, DAI Y H, NIE J W. All real eigenvalues of symmetric tensors[J]. Siam Journal on Matrix Analysis and Applications, 2014, 35(4): 1582-1601. doi: 10.1137/140962292
[5] WANG X Z, WEI Y M. Bounds for eigenvalues of nonsingular H-tensors[J]. Electronic Journal of Linear Algebra, 2015, 29: 3-16. doi: 10.13001/1081-3810.3116
[6] 江如. 广义对角占优矩阵的新判据[J]. 华南师范大学学报(自然科学版), 2010, 42(1): 24-27. http://www.cnki.com.cn/Article/CJFDTotal-HNSF201001006.htm JIANG R. New criteria for generalized diagonally dominant matrices[J]. Journal of South China Normal University(Natural Science Edition), 2010, 42(1): 24-27. http://www.cnki.com.cn/Article/CJFDTotal-HNSF201001006.htm
[7] CHANG K C, PEARSON K, ZHANG T. Perron-Frobenius theorem for nonnegative tensors[J]. Communications in Mathematical Sciences, 2008, 6: 507-520. doi: 10.4310/CMS.2008.v6.n2.a12
[8] FALLAT S M, JOHNSON C R. Sub-direct sums and positivity classes of matrices[J]. Linear Algebra and its App-lications, 1999, 288: 149-173. doi: 10.1016/S0024-3795(98)10194-5
[9] FALLAT S M, JOHNSON C R, TORREGROSA J R, et al. P-matrix completions under weak symmetry assumptions[J]. Linear Algebra and its Applications, 2000, 312: 73-91. doi: 10.1016/S0024-3795(00)00088-4
[10] SMITH B F, BJORSTAD P E, GROPP W D. Domain decomposition: parallel multilevel methods for elliptic partial differential equations[M]. Cambridge: Cambridge University Press, 1996.
[11] BRU R, PEDROCHE F, SZYLD D B. Subdirect sums of S- strictly diagonally dominant matrices[J]. Electronic Journal of Linear Algebra, 2006, 15: 201-209. http://www.researchgate.net/publication/250067789_Subdirect_sums_of_S-strictly_diagonally_dominant_matrices
[12] BRU R, PEDROCHE F, SZYLD D B. Subdirect sums of nonsingular M-matrices and of their inverse[J]. Electronic Journal of Linear Algebra, 2005, 13: 162-174. http://www.researchgate.net/publication/265876168_Subdirect_sums_of_nonsingular_M-matrices_and_of_their_inverses
[13] BRU R, CVETKOVIC L, KOSTIC V, et al. Sums of Σ-strictly diagonally dominant matrices[J]. Linear and Multilinear Algebra, 2010, 58(1): 75-78. doi: 10.1080/03081080802379725
[14] ZHU Y, HUANG T Z. Subdirect sum of doubly diagonally dominant matrices[J]. Electronic Journal of Linear Algebra, 2007, 16: 171-182. http://www.researchgate.net/publication/241034219_Subdirect_sums_of_doubly_diagonally_dominant_matrices
[15] LI C Q, LIU Q L, GAO L, et al. Subdirect sums of Nekrasov matrices[J]. Linear and Multilinear Algebra, 2016, 64(2): 208-218. doi: 10.1080/03081087.2015.1032198
[16] LI C Q, MA R D, LIU Q L, et al. Subdirect sums of weakly chained diagonally dominant matrices[J]. Linear and Multilinear Algebra, 2017, 65(6): 1220-1231. doi: 10.1080/03081087.2016.1233933
[17] LIU Q L, HE J F, GAO L, et al. Note on subdirect sums of SDD(p) matrice[J/OL]. (2019-01-21)[2020-08-04]. https://doi.org/10.1080/03081087.2020.1807457.
[18] 罗自炎, 祁力群. 半正定张量[J]. 中国科学: 数学, 2016, 46(5): 639-654. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201605012.htm LUO Z Y, QI L Q. Positive semidefinite tensors[J]. Scientia Sinica Mathematica, 2016, 46(5): 639-654. https://www.cnki.com.cn/Article/CJFDTOTAL-JAXK201605012.htm
计量
- 文章访问数: 496
- HTML全文浏览量: 286
- PDF下载量: 41