The Antibacterial Effect of 82 Kinds of Chinese Herbal Medicines and Their Compounds on Aeromonas vernoii from Lateolabrax maculatus in Vitro
-
摘要: 为探究单方及复方中草药对花鲈(Lateolabrax maculatus)源维氏气单胞菌(Aeromonas vernoii)的体外抑菌作用,采用平板打孔法测定乌梅(Prunus mume)、苏木(Caesalpinia sappan)和五倍子(Galla chinensis)等82种单方中草药对维氏气单胞菌的抑制作用,用试管二倍稀释法测定抑菌作用较好的中草药对维氏气单胞菌最小抑菌质量浓度(Minimum Inhibitory Concentration, MIC)和最小杀菌质量浓度(Minimum Bactericidal Concentration, MBC),并选择更敏感的中药进行复方作用评价. 结果显示:36种中草药对维氏气单胞菌有抑制作用,其中乌梅、苏木、五倍子、丁香(Syzygium aromaticum)和艾叶(Artemisia argyi)对维氏气单胞菌抑制作用较强,抑菌圈直径介于15~25 mm,MIC < 125 mg/mL,且MBC < 500 mg/mL. 复方中草药中,乌梅+丁香、乌梅+五倍子对维氏气单胞菌抑制作用较好,抑菌圈直径>19 mm,MIC为15.6 mg/mL,MBC介于31.25~62.5 mg/mL,但联合抑菌指数分析显示它们呈现无关作用. 该研究表明:单方中草药乌梅、苏木有利于体外抑制和消除花鲈源维氏气单胞菌,为水产中草药物的开发提供数据支撑.Abstract: To study the antibacterial effect of single and compound Chinese herbal medicines on Aeromonas vernoii from Lateolabrax maculatus in vitro, the inhibitory effect of 82 kinds of single Chinese herbal medicine, such as Prunus mume, Caesalpinia sappan and Galla chinensis, on A. vernoii was determined with the plate drilling method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of Chinese herbal medicine with good antibacterial effect on A. vernoii were determined with the testing tube double dilution method. The more sensitive Chinese herbal medicines were selected to evaluate their compound antibacterial effect. The results showed that 36 kinds of single Chinese herbal medicines had inhibitory effects on A. vernoii, among which P. mume, C. sappan, G. chinensis, Syzygium aromaticum and Artemisia argyi had relatively strong inhibitory effects on A. vernoii. The diameter of the inhibitory circle was between 15~25 mm, MIC < 125 mg/mL and MBC < 500 mg/mL. Among the compound Chinese herbal medicines, P. mume+S. aromaticum and P. mume+G. chinensis had better inhibitory effect on A. vernoii. The inhibitory circle diameter was >19 mm, MIC was 15.6 mg/mL, and MBC was 31.25~62.5 mg/mL. However, the combined bacteriostatic index analysis showed that they had an independent effect. This study shows that single Chinese herbal medicine such as P. mume and C. sappan were beneficial to the inhibition and elimination of A. vernoii in vitro and provides data support for the development of aquatic Chinese herbal medicine.
-
植物激素脱落酸(ABA)在植物生命周期的各种生理过程中起着至关重要的作用,包括种子休眠、发芽和对环境胁迫条件的适应性反应[1-2]. 当植物面临干旱、盐、渗透等胁迫时,植物体内的ABA快速增加,调节植物体内的稳态. 植物中ABA水平取决于其生物合成、分解、运输、转化、贮存和利用,其中无生理活性的结合型ABA葡萄糖酸酯(ABA-GE)水解成具有生理活性的游离型ABA也至关重要,关系到ABA对植物生长发育的调节. 这个步骤由植物的ABA特异性β-葡萄糖苷酶(简称BG或BGLU)将无活性的ABA-GE水解后形成活性的ABA[3]. 目前,在拟南芥中发现4个β-葡萄糖苷酶(AtBG1、AtBG2、BGLU10、BGLU18)都能催化ABA-GE转变成ABA[4-5]. 玉米基因组中具有26个编码β-葡萄糖苷酶的基因,信号肽的分析显示它们分别定位于质体、线粒体、胞质和液泡[6].
β-葡萄糖苷酶参与植物对胁迫的快速响应,通过提高ABA质量分数可提高植物对非生物胁迫的耐受性. 有报道指出: bglu18拟南芥突变体延迟了脱水诱导的ABA积累[5]. 水稻 Os3BGlu6可以在体外将ABA-GE水解为ABA,水稻缺失 Os3BGlu6的突变体植株矮小,叶片ABA质量分数和光合作用速率降低导致水稻抗旱性下降[7]. 过表达 BG1匍匐翦股颖ABA水平积累高,导致植株矮生并提高了干旱存活率[8]. AtBG1通过其对气孔发育的负调控来确保正常的气孔密度,还可以快速形成活性ABA以适应水分亏缺[9].
课题组的前期工作发现:在花生响应干旱胁迫时,有6个β-葡萄糖苷酶家族基因的表达水平显著提高,对维持ABA稳态发挥作用[10],但具体机制尚不清楚. 本文根据花生响应干旱的转录组结果,从花生中克隆了BG基因(命名为AhBG1),将其在拟南芥异源表达,研究其对ABA敏感性和抗旱性的影响,为认识AhBG1的功能提供依据.
1. 材料与方法
1.1 拟南芥培养
在超净工作台中用75%乙醇处理拟南芥种子40 s,再用无水乙醇处理2次,每次40 s,转移到含有1/2 MS固体培养基上. 在4 ℃避光层积处理2 d后,置于光下培养7 d. 待幼苗长出后移栽到高温灭菌的泥炭土生长.
1.2 序列分析及预测
基于NCBI的Blast和GenBank(http://www.ncbi.nlm.nih.gov/BLAST)对cDNA和其编码氨基酸序列进行了分析. 使用TMHMM 2.0对二级结构进行预测(http://www.cbs.dtu.dk/services/),用SignalP 4.1 server分析信号肽.
1.3 AhBG1蛋白的亚细胞定位观察
取约10片未抽薹的拟南芥嫩叶片,酶解法提取原生质体,将重组质粒瞬时转入原生质体,在拟南芥室温23 ℃避光孵育13~24 h,然后用激光共聚焦显微镜Leica LSM Image Browser 3.2 program(Leica Corporation, Germany)进行拍照观察.
1.4 ABA质量分数的测定
用HPLC仪(日本岛津Shimadzu LC-6A)测定,以Sigma公司ABA样品为标准品,用10 μL ABA样品注入Kromasil C18柱,设置柱温为35 ℃,流动相为V(甲醇) ∶ V(1%乙酸)=45 ∶ 55,流速1 mL/min. 检测器Waters 486 detector,检测波长为252 nm. 绘制ABA标准曲线. 取同一叶位的叶片0.3 g,采用同样的参数根据峰面积计算出样品每克干质量的内源ABA的质量分数.
1.5 ABA敏感性分析
参照GE等[11]方法. 将Col-0野生型和AhBG1过表达拟南芥株系种子分别铺板于含有不同ABA浓度的1/2 MS培养基,层积处理2 d后置于光下培养,统计萌发率. 光下培养8 d后观察不同浓度ABA的平板上子叶生长状况,统计子叶变绿率.
1.6 拟南芥幼苗干旱存活率统计
将Col-0野生型和过表达AhBG1拟南芥植株正常培养至3周龄后停止供水21 d,再复水培养7 d,观察并分析拟南芥幼苗的生长状态并统计存活率.
1.7 叶片失水率分析
取正常生长条件下培养3周龄的拟南芥莲座叶放于培养皿,置于光照培养箱(28 ℃,60%相对湿度)中, 每隔30 min称量叶片质量(m),计算叶片失水率. 计算公式如下:
叶片失水率(%)=(m0−mt)/m0×100%, 其中,m0为叶片放进培养箱时的质量,mt为t min后叶片的质量.
1.8 数据分析
所有实验重复3次,用均数±标准差表示,使用SPSS18.0统计软件进行方差分析(ANOVA),P < 0.05表示差异有统计学意义. 使用Microcal Origin 7.5软件作图.
1.9 基因表达检测
提取拟南芥RNA,用PrimeScriptTM one step RT-PCR kit试剂盒反转得到cDNA. 根据已知的基因序列,设计RealTime PCR引物(表 1),按照TaKaRa公司的SYBR Premix Ex TaqTM Ⅱ说明书进行Real Time PCR. PCR反应条件为:95 ℃ 30 s,1个循环;95 ℃ 5 s,60 ℃ 34 s (退火温度取决于不同引物的最适反应温度),共50个循环. 利用2-ΔΔCT方法分析基因的相对表达量.
表 1 相关基因表达所用的引物Table 1. The primers for related gene expression基因 引物序列(5′→3′) actin F: GGTAACATTGTGCTCAGTGGTGG R: AACGACCTTAATCTTCATGCTGC AtAREB1 F: TGGTGGTCTTGTGGGACTTGG R: CCATTACTCTTCCCTATCCCTTC AtRD29A F: AAAGCAATGAGCATGAGCAAG R: AATCGGAAGACACGACAGGAA AtCYP707A1 F: AGCGACGGGATTCAGTATGGG R: AAAGGCAATTCTGTCATTCTAC AtNCED3 F: CGGTGGTTTACGACAAGAACAA R: CTGCTTCGAGGTTGACTTGTTGAT AtUGT71C5 F: ATCCGGGTCTAGCTTCGG R: ATTCCACGGCCCATTGTT 2. 结果与分析
2.1 AhBG1的氨基酸序列分析
氨基酸序列的多重比对分析表明:AhBG1与拟南芥AtBG1、AtBG2、水稻Os3BG6的同源性分别是8.88%、8.63%和9.77%. TMHMM 2.0分析预测表明:AhBG1的二级结构中含有1个跨膜结构,跨膜螺旋氨基酸结构位于7~24氨基酸位点(图 1A). 使用SignalP 4.1 server在线分析发现其第1~第28氨基酸位点具有信号肽(图 1B).
2.2 AhBG1转基因拟南芥筛选和AhBG1蛋白定位
利用花椰菜花叶病毒(CaMV)35S启动子与AhBG1基因及绿色荧光蛋白基因eGFP融合,将P35S ∶ ∶ AhBG1 - eGFP在拟南芥原生质体细胞中瞬时表达,使用激光共聚焦荧光显微镜观察,发现AhBG1基因编码的蛋白定位于细胞质(图 2A). 通过农杆菌EHA105将AhBG1基因的过表达载体p35S ∶ ∶ AhBG1 - eGFP异源转化到拟南芥中,筛选获得3个AhBG1超表达拟南芥株系(图 2B),根据AhBG1基因表达从高到低命名为AhBG1-OX-1、AhBG1-OX-2和AhBG1-OX-3. 激光共聚焦显微镜观察AhBG1过表达阳性拟南芥株系根尖有绿色荧光,AhBG1-eGFP融合蛋白在细胞质中出现绿色荧光,确定AhBG1蛋白确实定位于细胞质(图 2C).
2.3 过表达AhBG1对拟南芥植株体内ABA质量分数和ABA敏感性的影响
ABA是响应干旱胁迫的重要应激激素. 对AhBG1-OX-1、AhBG1-OX-2、AhBG1-OX-3和Col-0野生型拟南芥植株脱水处理2 h,检测叶片中ABA质量分数的变化. 在正常生长条件下,AhBG1-OX-1株系拟南芥体内的ABA质量分数高于野生型,脱水处理2 h后,各株系拟南芥的ABA质量分数都显著增加,其中过表达拟南芥中ABA质量分数的升高显著高于野生型,特别是AhBG1-OX-1株系拟南芥的ABA质量分数最高(图 3). 说明AhBG1的过表达可能促进了转基因植株叶片内ABA-GE生成ABA,有利于适应干旱胁迫.
将Col-0野生型和AhBG1-OX-1株系拟南芥种子分别铺板于含有0.1、0.5、2.0 μmol/L ABA的1/2 MS培养基,层积处理后统计萌发率. 在0.1、0.5、2.0 μmol/L ABA处理下AhBG1-OX-1株系拟南芥种子萌发率均低于Col-0野生型(图 4A). 种子正常萌发后,将AhBG1-OX-1株系和Col-0野生型拟南芥植株移入含有不同浓度ABA的平板上生长8 d,观察子叶生长状况. 结果表明:在0.5 μmol/L ABA的生长条件下,AhBG1-OX-1株系拟南芥的子叶变绿率低于Col-0野生型(图 4B、C). 以上ABA处理后的实验结果说明,在拟南芥中异源过表达AhBG1基因提高转基因植株内源ABA质量分数和对外源ABA的敏感性.
2.4 过表达AhBG1对拟南芥耐旱性的影响
ABA是植物响应干旱的关键激素之一,因此本研究对3周龄的AhBG1-OX-1、AhBG1-OX-2、AhBG1-OX-3株系和Col-0野生型拟南芥植株停止供水21 d,再继续复水7 d. 结果发现:AhBG1-OX-1、AhBG1-OX-2和AhBG1-OX-3株系拟南芥的存活率均高于Col-0野生型,其中AhBG1-OX-1株系拟南芥存活率最高(图 5A、B). 在脱水处理30~300 min期间,AhBG1-OX-1株系拟南芥叶片失水率持续显著低于Col-0野生型(图 5C),表明AhBG1转基因拟南芥植株的耐旱性增强.
2.5 脱水处理对过表达AhBG1拟南芥体内ABA稳态相关基因表达的影响
检测干旱情况下过表达AhBG1拟南芥中ABA稳态相关基因表达变化. 正常情况下,在AhBG1-OX-1株系拟南芥中,AtRD29A表达高于Col-0野生型(表达量增加5.2倍,图 6C),而AtAREB1、AtNCED3、AtCYP707A1、AtUGT71C5基因的表达与野生型拟南芥无显著变化. 脱水2 h后,在AhBG1-OX-1株系和Col-0野生型中AtNCED3、AtCYP707A1、AtAREB1和AtRD29A等基因的表达皆上调,AtUGT71C5基因的表达下调(图 6). 其中,在AhBG1-OX-1株系中AtNCED3、AtAREB1和AtRD29A基因表达增幅显著高于Col-0野生型,而AtCYP707A1表达增幅显著低于Col-0野生型. 结果也与脱水处理下 AhBG1-OX株系和Col-0野生型叶片ABA质量分数的变化结果相吻合.
3. 讨论
ABA稳态是指植物自我调节并保持其内部游离型ABA含量相对稳定的一种状态,受到植物体内ABA生物合成、氧化代谢、可逆糖基化、转运等调控[12]. 外界环境胁迫下,植物通过调节ABA水平的动态变化,以调控植物水分平衡、影响体内渗透调节、提高细胞耐受性来提高植物的抗旱能力. HAN等[5]指出, 植物在干旱胁迫下,体内ABA含量的增加首先来自于ABA-GE的水解. 这引起研究人员对植物体内ABA特异性β-葡萄糖苷酶功能的研究.
我们从花生的数据库中筛选并克隆的AhBG1,与拟南芥的AtBG1与AtBG2氨基酸序列同源性较低,具有信号肽和跨膜区域. AtBG1和AtBG2分别定位于内质网[4]和液泡[13]. 本研究发现AhBG1定位在细胞质(图 2),推测其作用可能不同于AtBG1和AtBG2,有待进一步研究. 另外,组织特异性检测表明花生根、茎和叶片中AhBG1均有表达,其中在叶片中表达水平最高,与拟南芥BGLU18在叶中高水平表达一致[14],经干旱处理时,花生中AhBG1表达增加(未发表),表明AhBG1在花生叶片响应干旱过程可能发挥重要作用.
β-葡萄糖苷酶提高植株体内ABA水平从而促进植株的抗旱性[4-5, 7-8]. 过表达AtBG1拟南芥在正常条件下的叶片和根部ABA水平略增加,在脱水条件下ABA含量增加了20倍,从而表现出对干旱的耐受性[4],水稻Os3BGlu6的过表达提高了水稻的耐旱性[7]. 而T-DNA插入突变体Atbg1表现为对干旱敏感. bglu10突变体拟南芥在干旱处理下叶片失水率较高,ABA含量和β-葡萄糖苷酶活性较低,最终导致耐旱性降低[19]. 过表达AhBG1拟南芥在干旱条件下体内的ABA水平显著高于野生型(图 3),使其提高了ABA的敏感性和抗旱性.
9-顺式-环氧类胡萝卜素双加氧酶(NCED)是ABA生物合成的关键酶[15-16],除ABA生物合成外,分解代谢是控制细胞ABA水平的主要过程. 细胞色素P450家族的4个成员CYP707A1至CYP707A4进行羟化反应,生成不稳定的8′-羟基ABA[17]. ABA通过ABA UDP-葡萄糖基转移酶(UGT)与葡萄糖结合,生成无生理活性的ABA-GE[2]. AtABRE1是ABRE依赖性的ABA信号激活因子,是ABA信号通路过程的关键正调控因子,可增强拟南芥干旱耐受性[18]. 脱水2 h后,在AhBG1-OX株系中AtNCED3、AtAREB1和AtRD29A基因表达增幅显著高于Col-0野生型,而AtUGT71C5、AtCYP707A1表达增幅显著低于Col-0野生型(图 6). 表明同等条件的脱水处理,更能诱导AhBG1-OX-1株系ABA生物合成途径和信号转导途径相关基因的表达上调,促进ABA糖基化途径基因和分解代谢途径基因下调,同时控制氧化代谢途径基因上调程度,从而有利于促进植物体内ABA积累,提升过表达植株的抗干旱能力. 因此,AhBG1蛋白定位于细胞质,可能通过催化ABA-GE形成ABA,从而提高植物体内的ABA含量,并影响ABA生物合成、分解代谢及信号通路等相关稳态基因的表达提高植物体的耐旱性.
-
表 1 供试中草药清单
Table 1 The list of Chinese herbal medicines in the experiment
中草药 拉丁名 中草药 拉丁名 乌梅 Prunus mume 白芍 Paeonia lactiflora 苏木 Caesalpinia sappan 百合 Lilium brownii 五倍子 Galla chinensis 槟榔 Areca catechu 丁香 Syzygium aromaticum 赤芍 Paeoniae Radix 艾叶 Artemisia argyi 穿心莲 Andrographis paniculata 黄芩 Sastellaria baicalensis 淡竹叶 Lophatherum gracile 石榴皮 Punica granatum 地骨皮 Lycium chinense 五味子 Schisandra chinensis 浮萍 Lemna minor 分心木 Juglans regia 甘草 Glycyrrhiza uralensis 泽兰 Aconitum gymnandrum 谷芽 Setaria italica 绵茵陈 Artemisia scoparia 虎杖 Polygonum cuspidatum 小茴香 Nepeta tenuifolia 黄柏 Phellodendron chinense 女贞子 Ligustrum lucidum 黄芪 Astragalus membranaceus 八角茴香 Illicium verum 鸡骨草 Abrus precatorius 青蒿 Artemisia annua 鸡内金 Galli Gigeriae 仙鹤草 Agrimonia polosa 绞股蓝 Gynostemma pentaphyllum 防风 Saposhnikovia divaricata 金银花 Lonicera japonica 厚朴 Xylosma controversum 龙胆草 Gentiana scabra 辛夷 Magnolia liliiflora 鹿含草 Pyrola calliantha 荆芥 Nepeta cataria 络石藤 Trachelospermum jasminoides 紫花地丁 Viola yedoensis 马齿苋 Portulaca oleracea 苦地丁 Corydalis bungeana 麦芽 Hordeurn vulgare 薄荷 Mentha haplocalyx 猫爪草 Ranunculus ternatus 鱼腥草 Houttuynia cordata 牛蒡子 Arctium lappa 大黄 Rheum palmatum 佩兰 Eupatorium fortunei 板蓝根 Radix Isatidis 青黛 Indigo Naturalis 野菊花 Dendranthema indicum 桑叶 Folium Mori 蒲公英 Taraxacum mongolicum 神曲 Massa Medicata 决明子 Cassia obtusifolia 柿蒂 Diospyros kaki 白薇 Cynanchum atratum 天冬 Asparagus cochinchinensis 合欢花 Albizia julibrissin 天花粉 Trichosanthes Kirilowii 槐花 Sophora japonica 天南星 Arisaema erubescens 苍术 Atractylodes lancea 吴茱萸 Evodia rutaecarpa 石韦 Pyrrosia lingua 香加皮 Periploca sepium 金钱草 Lysimachia christinae 延胡索 Corydalis yanhusuo 栀子 Gardenia jasminoides 银柴胡 Stellaria dichotoma 柏子仁 Platycladus orientalis 竹茹 Bambusa tuldoides 桑寄生 Taxillus sutchuenensis 桂枝 Cinnamomum cassia 桑枝 Morus alba 土牛膝 Achyranthes bidentata 蔓荆 Vitex trifolia 红花 Carthamus tinctorius 丹参 Salvia miltiorrhiza 白前 Cynanchum glaucescens 表 2 单方中草药对维氏气单胞菌体外抑菌效果
Table 2 The bacteriostatic effect of single Chinese herbal medicine on A. vernoii in vitro
中草药 抑菌圈直径/mm 抑菌等级 乌梅 Prunus mume 21.44±0.53 ++++ 苏木 Caesalpinia sappan 18.39±1.19 +++ 五倍子 Galla chinensis 18.17±1.87 +++ 丁香 Syzygium aromaticum 17.11±2.47 +++ 艾叶 Artemisia argyi 16.56±1.67 +++ 黄芩 Sastellaria baicalensis 14.89±1.36 ++ 石榴皮 Punica granatum 14.44±1.01 ++ 五味子 Schisandra chinensis 13.33±0.50 ++ 分心木 Juglans regia 12.78±1.06 ++ 泽兰 Aconitum gymnandrum 12.33±0.71 ++ 绵茵陈 Artemisia scoparia 12.17±0.61 ++ 小茴香 Nepeta tenuifolia 11.00±0.00 ++ 女贞子 Ligustrum lucidum 11.61±0.49 ++ 八角茴香 Illicium verum 11.39±0.22 ++ 青蒿 Artemisia annua 11.33±0.79 ++ 仙鹤草 Agrimonia polosa 10.00±0.43 ++ 防风 Saposhnikovia divaricata 10.00±0.43 ++ 厚朴 Xylosma controversum 10.89±1.02 ++ 辛夷 Magnolia liliiflora 10.78±0.26 ++ 荆芥 Nepeta cataria 10.67±0.87 ++ 紫花地丁 Viola yedoensis 10.56±1.13 ++ 苦地丁 Corydalis bungeana 10.22±0.67 ++ 薄荷 Mentha haplocalyx 10.22±0.57 ++ 鱼腥草 Houttuynia cordata 9.67±1.66 + 大黄 Rheum palmatum 9.67±0.71 + 板蓝根 Radix Isatidis 9.67±0.71 + 野菊花 Dendranthema indicum 9.50±0.56 + 蒲公英 Taraxacum mongolicum 9.22±0.91 + 决明子 Cassia obtusifolia 9.11±0.60 + 白薇 Cynanchum atratum 8.83±0.35 + 合欢花 Albizia julibrissin 8.78±0.51 + 槐花 Sophora japonica 8.72±0.67 + 苍术 Atractylodes lancea 8.44±0.73 + 石韦 Pyrrosia lingua 7.94±0.46 + 金钱草 Lysimachia christinae 7.67±0.50 + 栀子 Gardenia jasminoides 7.39±0.22 + 注:++++为极度敏感;+++为高度敏感;++为中度敏感;+为低度敏感 表 3 7种复方中药对维氏气单胞菌体外抑菌效果
Table 3 The bacteriostatic effect of 7 kinds of compound Chinese herbal medicines on A. vernoii in vitro
复方中草药 抑菌圈直径/mm 抑菌等级 乌梅+丁香 Prunus mume+Syzygium aromaticum 22.50±0.58 ++++ 乌梅+五倍子 Prunus mume+ Galla chinensis 19.38±0.48 +++ 乌梅+苏木 Prunus mume+ Caesalpinia sappan 15.75±0.87 +++ 丁香+五倍子 Syzygium aromaticum+Galla chinensis 19.38±0.48 +++ 丁香+苏木 Syzygium aromaticum+Caesalpinia sappan 15.88±0.25 +++ 丁香+艾叶 Syzygium aromaticum+ Artemisia argyi 14.63±0.25 ++ 苏木+五倍子 Caesalpinia sappan+ Galla chinensis 17.75±0.50 +++ 注:++++为极度敏感;+++为高度敏感;++为中度敏感;+为低度敏感 表 4 单方中药对维氏气单胞菌最小抑菌浓度和最小杀菌浓度
Table 4 The minimum bacteriostatic concentration and minimum bactericidal concentration of single Chinese medicines on A. vernoii
中草药 最小抑菌质量浓度/(mg·mL-1) 最小杀菌质量浓度/(mg·mL-1) 乌梅 Prunus mume 15.60 31.25 苏木 Caesalpinia sappan 15.60 31.25 黄芩 Sastellaria baicalensis 15.60 15.60 五倍子 Galla chinensis 31.25 31.25 分心木 Juglans regia 31.25 62.50 绵茵陈 Artemisia scoparia 31.25 31.25 丁香 Syzygium aromaticum 62.50 125.00 石榴皮 Punica granatum 62.50 125.00 五味子 Schisandra chinensis 62.50 62.50 八角茴香 Illicium verum 62.50 62.50 青蒿 Artemisia annua 62.50 125.00 辛夷 Magnolia liliiflora 62.50 125.00 艾叶 Artemisia argyi 125.00 500.00 荆芥 Nepeta cataria 125.00 250.00 紫花地丁 Viola yedoensis 125.00 125.00 苦地丁 Corydalis bungeana 125.00 250.00 薄荷 Mentha haplocalyx 125.00 250.00 小茴香 Nepeta tenuifolia 125.00 125.00 仙鹤草 Agrimonia polosa 125.00 125.00 防风 Saposhnikovia divaricata 250.00 500.00 厚朴 Xylosma controversum 250.00 250.00 泽兰 Aconitum gymnandrum 500.00 500.00 女贞子 Ligustrum lucidum 500.00 500.00 表 5 复方中草药对维氏气单胞菌最小抑菌质量浓度和最小杀菌质量浓度
Table 5 The minimum bacteriostatic concentration and minimum bactericidal concentration of compound Chinese herbal medicines on A. vernoii
中草药 最小抑菌质量浓度/ (mg·mL-1) 最小杀菌质量浓度/ (mg·mL-1) 联合抑菌指数 作用效应 乌梅+苏木 Prunus mume+Caesalpinia sappan 31.25 62.50 4.00 拮抗 乌梅+五倍子 Prunus mume+Galla chinensis 15.60 31.25 1.50 无关 乌梅+丁香 Prunus mume+Syzygium aromaticum 15.60 62.50 1.20 无关 苏木+五倍子 Caesalpinia sappan+Galla chinensis 31.25 62.50 3.00 拮抗 苏木+丁香 Caesalpinia sappan+Syzygium aromaticum 62.50 125.00 5.00 拮抗 五倍子+丁香 Galla chinensis+Syzygium aromaticum 31.25 62.50 1.50 无关 艾叶+丁香 Artemisia argyi+Syzygium aromaticum 31.25 125.00 0.75 相加 -
[1] 胡安东, 杨霞, 张飘, 等. 水生动物维氏气单胞菌病概述[J]. 贵州畜牧兽医, 2019, 43(2): 39-42. doi: 10.3969/j.issn.1007-1474.2019.02.012 HU A D, YANG X, ZHANG P, et al. Overview of Aeromonas vernoii in aquatic animals[J]. Journal of Guizhou Animal Husbandry and Veterinary Medicine, 2019, 43(2): 39-42. doi: 10.3969/j.issn.1007-1474.2019.02.012
[2] 李槿年, 马彤彤, 房慧, 等. 草鱼源致病性维氏气单胞菌的鉴定及其黏附特性分析[J]. 安徽农业大学学报, 2019, 46(4): 603-609. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201904008.htm LI J N, MA T T, FANG H, et al. Identification of pathogenic Aeromonas veronii isolated from grass carps (Ctenopharyngodon idella) and analysis of its adhesion characteristics[J]. Journal of Anhui Agricultural University, 2019, 46(4): 603-609. https://www.cnki.com.cn/Article/CJFDTOTAL-ANHU201904008.htm
[3] 李忠琴, 张坤, 林茂, 等. 大黄鱼(Pseudosciaena crocea)致病性维氏气单胞菌的分离鉴定与药敏特性研究[J]. 海洋与湖沼, 2017, 48(1): 139-147. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201701016.htm LI Z Q, ZHANG K, LIN M, et al, Isolation and identification of pathogenic Aeromonas veronii from pseudosciaena crocea[J]. Oceanologia et Limnologia Sinica, 2017, 48(1): 139-147. https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201701016.htm
[4] ZHANG D X, KANG Y H, CHEN L, et al. Oral immunization with recombinant Lactobacillus casei expressing OmpAI confers protection against Aeromonas veronii challenge in common carp, Cyprinus carpio[J]. Fish & Shellfish Immunology, 2017, 72: 552-563. http://europepmc.org/abstract/MED/29155272
[5] 黄志坚, 陈旭凌, 路晓峰, 等. 水产养殖生物和养殖环境细菌鉴定及抗生素抗性基因检测[J]. 中山大学学报(自然科学版), 2012, 51(6): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201206019.htm HUANG Z J, CHEN, L X, LU X F, et al. Identification and antibiotic resistance genes detection of bacteria in aquaculture organisms and aquatic environment[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2012, 51(6): 92-96. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201206019.htm
[6] WU J J, SU Y L, DENG Y Q, et al. Prevalence and distribution of antibiotic resistance in marine fish farming areas in Hainan, China[J]. Science of the Total Environment, 2019, 653: 605-611. doi: 10.1016/j.scitotenv.2018.10.251
[7] 温海深, 于朋, 李昀, 等. 花鲈南北方养殖群体的形态学比较研究[J]. 中国水产, 2020(4): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SICA202004027.htm WEN H S, YU P, LI Y, et al. A comparative study on morphology of the northern and southern breeding groups of Lateolabrax japonicus[J]. China Fisheries, 2020(4): 81-84. https://www.cnki.com.cn/Article/CJFDTOTAL-SICA202004027.htm
[8] 农业农村部渔业渔政管理局. 2019中国渔业统计年鉴[M]. 北京: 中国农业出版社, 2019. [9] HAN Y L, HOU C C, DU C, et al. Molecular cloning and expression analysis of five heat shock protein 70 (HSP70) family members in Lateolabrax maculatus with Vibrio harveyi infection[J]. Fish & Shellfish Immunology, 2017, 60: 299-310. http://www.ncbi.nlm.nih.gov/pubmed/27908666
[10] 毛灿, 苏友禄, 李勇, 等. 花鲈源杀鱼爱德华菌耐药谱及毒力相关性分析[J]. 中国水产科学, 2020, 27(7): 846-857. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSCK202007011.htm MAO C, SU Y L, LI Y, et al. Analysis of the relationship on antibiotic resistance and virulence of Edwardsiella piscicida strains isolated from Lateolabrax maculatus[J]. Journal of Fishery Sciences of China, 2020, 27(7): 846-857. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSCK202007011.htm
[11] 江飚, 龚颀杨, 李安兴. 6种中草药体外杀灭刺激隐核虫及乌梅预防效果研究[J]. 南方水产科学, 2018, 14(2): 118-123. doi: 10.3969/j.issn.2095-0780.2018.02.016 JIANG B, GONG X Y, LI A X. Killing effects of extracts of six Chinese herbal medicines on Crytocaryon irritans in vitro and preventive effect of Fructus mume[J]. South China Fisheries Science, 2018, 14(2): 118-123. doi: 10.3969/j.issn.2095-0780.2018.02.016
[12] IMMANUEL G, SIVAGNANAVELMURUGAN M, BALASUBRAMANIAN V, et al. Effect of hot water extracts of brown seaweeds Sargassum spp. on growth and resistance to white spot syndrome virus in shrimp Penaeus monodon postlarvae[J]. Aquaculture Research, 2010, 41(10): e545-e553. http://www.cabdirect.org/abstracts/20103321044.html
[13] 陈宇飞, 贾梦瑱, 孙剑萍, 等. 烟草角斑病绿色防控药剂的筛选和评价[J]. 农学学报, 2019, 9(7): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-XKKJ201907004.htm CHEN Y F, JIA M Z, SUN J P, et al. Screening and evaluation of green control bactericides for tobacco angular leaf spot disease[J]. Journal of Agriculture, 2019, 9(7): 19-23. https://www.cnki.com.cn/Article/CJFDTOTAL-XKKJ201907004.htm
[14] 马秀慧, 姜海波, 罗学评, 等. 中草药对罗非鱼源维氏气单胞菌体外抑菌效果研究[J]. 黑龙江畜牧兽医, 2018(16): 174-176, 179. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJX201816061.htm MA X H, JIANG H B, LUO X P, et al. Study on the inhibitory effect of Chinese herbal medicine on Aeromonas veronii from Tilapia in vitro[J]. Heilongjiang Animal Science and Veterinary Medicine, 2018(16): 174-176, 179. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJX201816061.htm
[15] WANG B T, MAO C, FENG J, et al. A first report of Aeromonas veronii infection of the sea bass, Lateolabrax maculatus in China[J]. Frontiers in Veterinary Science, 2021, 7: 600587/1-12. http://www.researchgate.net/publication/348623992_A_First_Report_of_Aeromonas_veronii_Infection_of_the_Sea_Bass_Lateolabrax_maculatus_in_China
[16] 夏与晴, 刘文珍, 傅松哲, 等. 25种中草药及其联合用药配伍对5种水产养殖常见致病菌的抑菌作用[J]. 大连海洋大学学报, 2019, 34(1): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DLSC201901002.htm XIA Y Q, LIU W Z, FU S Z, et al. Antimicrobial effects of 25 kinds of Chinese herbal medicines and their combinations on five routine pathogenic bacteria in aquaculture[J]. Journal of Dalian Ocean University, 2019, 34(1): 7-14. https://www.cnki.com.cn/Article/CJFDTOTAL-DLSC201901002.htm
[17] 潘吉脉, 胡安东, 杨霞, 等. 9味中药及其组方对鱼源弗氏柠檬酸杆菌体外抑菌试验的研究[J]. 扬州大学学报(农业与生命科学版), 2019, 40(4): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNX201904014.htm PAN J M, HU A D, YANG X, et al. Antibacterial test of 9 kinds of traditional Chinese medicines and the prescriptions to Citrobacter freundii in vitro[J]. Journal of YangZhou University(Agricultural and Life Science Edition), 2019, 40(4): 80-83. https://www.cnki.com.cn/Article/CJFDTOTAL-JSNX201904014.htm
[18] 姚火春. 兽医微生物学实验指导[M]. 北京: 中国农业出版社, 2002: 43-45. [19] 彭练慈, 殷中琼, 贾仁勇, 等. 20味中药提取物对无乳链球菌的体外抑菌活性研究[J]. 华南农业大学学报, 2014, 35(4): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNB201404005.htm PENG L C, YIN Z Q, JIA R Y, et al. Effects of twenty traditional Chinese medicine extracts against Streptococcus agalactiae in vitro[J]. Journal of South China Agricultural University, 2014, 35(4): 22-25. https://www.cnki.com.cn/Article/CJFDTOTAL-HNNB201404005.htm
[20] 刘梦茵, 刘芳, 周涛, 等. 乌梅提取物对蜡状芽孢杆菌的抑菌机理研究[J]. 食品科学, 2012, 33(11): 103-105. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201201021.htm LIU M Y, LIU F, ZHOU T, et al. Anti-bacillus cereus mechanisms of Fructus mume extract[J]. Food Science, 2012, 33(11): 103-105. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201201021.htm
[21] 刘梦茵, 刘芳, 周涛, 等. 乌梅乙醇提取物抑菌作用及其抑菌成分分析[J]. 食品科学, 2011, 32(17): 190-193. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201117040.htm LIU M Y, LIU F, ZHOU T, et al. Antibacterial activity and composition of ethanol extract from Fructus mume[J]. Food Science, 2011, 32(17): 190-193. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201117040.htm
[22] 张丹丹, 姜修婷. 乌梅有机酸的提取工艺及其抑菌活性[J]. 生物加工过程, 2018, 16(3): 47-52. doi: 10.3969/j.issn.1672-3678.2018.03.007 ZHANG D D, JIANG X T. Extraction and antibacterial activity of Fructus mume organic acids[J]. Chinese Journal of Bioprocess Engineering, 2018, 16(3): 47-52. doi: 10.3969/j.issn.1672-3678.2018.03.007
[23] LIAO L X, SONG X M, WANG L C, et al. Highly selective inhibition of IMPDH2 provides the basis of antineuroinflammation therapy[J]. Proceedings of the National Academy of ences of the United States of America, 2017, 114(29): E5986-E5994.
[24] 韩宗其. 苏木体外抗MRSA活性成分研究及细胞毒性评价[D]. 贵阳: 贵阳医学院, 2011. HAN Z Q. Study on anti-MRSA active components and cytotoxicity evaluation of Caesalpinia sappan in vitro[D]. Guiyang: Guizhou Medical University, 2011.
[25] 朱成科, 王建, 周燕, 等. 150种中草药体外抑杀维氏气单胞菌的药效研究[J]. 淡水渔业, 2018, 48(1): 80-85. doi: 10.3969/j.issn.1000-6907.2018.01.013 ZHU C K, WANG J, ZHOU Y, et al. Antimicrobial activities for 150 kinds of Chinese herbal medicines agsinst Aeromonas veronii in vitro[J]. Freshwater Fisheries, 2018, 48(1): 80-85. doi: 10.3969/j.issn.1000-6907.2018.01.013
[26] 吴计划. 五倍子酚对植物病原真菌的抗菌活性及作用机制[J]. 世界农药, 2006, 28(2): 29-32. doi: 10.3969/j.issn.1009-6485.2006.02.006 [27] 郑兰娟, 罗艳萍, 汪玉娇, 等. 五倍子抗菌抗炎作用研究进展[J]. 中国病原生物学杂志, 2011, 6(11): 868-869, 847. https://www.cnki.com.cn/Article/CJFDTOTAL-ZISC201111023.htm ZHEN L J, LUO X P, WANG Y J, et al. Advances in the study of the antibacterial and anti-inflammatory action of Galla chinensis[J]. Journal of Pathogen Biology, 2011, 6(11): 868-869, 847. https://www.cnki.com.cn/Article/CJFDTOTAL-ZISC201111023.htm
[28] 刘宏, 苏薇薇, 彭维, 等. 中药谱效学研究过程中差异样品的构建及应用[J]. 中山大学学报(自然科学版), 2019, 58(1): 126-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201901015.htm LIU H, SU W W, PENG W, et al. A novel approach to prepare the difference samples of traditional Chinese herbal formulae and its application[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2019, 58(1): 126-130. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSDZ201901015.htm
[29] 龙继兵, 周阳阳, 张冬星, 等. 中草药水提物对黄颡鱼源维氏气单胞菌的体外抑菌活性研究[J]. 黑龙江畜牧兽医, 2016(10上): 190-192, 196. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJX201619056.htm LONG J B, ZHOU Y Y, ZHANG D X, et al. The in vitro antibacterial activities of the aqueous extracts of Chinese herbal medicines on Aeromonas veronii from Pelteobagrus fulvidraco[J]. Heilongjiang Animal Science and Veterinary Medicine, 2016(10up): 190-192, 196. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJX201619056.htm
[30] PU H Y, LI X Y, DU Q B, et al. Research progress in the application of Chinese herbal medicines in Aquaculture: a review[J]. Engineering, 2017, 3(5): 731-737. doi: 10.1016/J.ENG.2017.03.017
[31] VAN H N. The use of medicinal plants as immunostimulants in aquaculture: a review[J]. Aquaculture, 2015, 446: 88-96. doi: 10.1016/j.aquaculture.2015.03.014
[32] HUANG A G, YI Y L, LING F, et al. Screening of plant extracts for anthelmintic activity against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus)[J]. Parasitology Research, 2013, 112(12): 4065-4072. doi: 10.1007/s00436-013-3597-7
[33] ABDEL-RAHMAN M A, HASSAN E D, MANSOUR E S, et al. Pomegranate peel and moringa-based diets enhanced biochemical and immune parameters of Nile tilapia against bacterial infection by Aeromonas hydrophila[J]. Microbial Pathogenesis, 2020, 145: 104202/1-11. doi: 10.1016/j.micpath.2020.104202
[34] ABASALI H, MOHAMAD S. Immune response of common carp (Cyprinus carpio) fed with herbal immunostimulants diets[J]. Journal of Animal & Veterinary Advances, 2010, 9(13): 1839-1847. http://www.cabdirect.org/abstracts/20103288942.html
计量
- 文章访问数: 587
- HTML全文浏览量: 167
- PDF下载量: 57