On the Weakly Almost Periodic Point and the Periodic Sequence Shadowing Property Under Strongly Uniform Convergence
-
摘要: 在强一致收敛下,研究了弱几乎周期点和周期序列跟踪性,得到弱几乎周期点和周期序列跟踪性的若干结论: (1)设序列映射{fn}强一致收敛于等度连续映射f,且点列{xk}是每个映射fn的弱几乎周期点. 若limk→∞xk=x,则x是f的弱几乎周期点. (2)若序列映射{fn}强一致收敛于等度连续映射f,则limsup W(fn)⊂W(f). (3)若fn具有fine周期序列跟踪性,则f具有周期序列跟踪性.Abstract: The weakly almost periodic point and the periodic sequence shadowing property are studied under strongly uniform convergence. Some conclusions about them are obtained. First, let the sequence map {fn} converge strongly uniformly to the equicontinuous map f and the sequence of points{xk}be the weakly almost periodic point of every map fn. If limk→∞xk=x, then the point x is the weakly almost periodic point of the map f. Second, if the sequence map{fn}converges strongly uniformly to the equicontinuous map f, then limsup W(fn)⊂W(f). Third, if fn has the fine periodic sequence shadowing property, then f has periodic sequence shadowing property.
-
周期序列跟踪性和弱几乎周期点是动力系统中非常重要的概念,与系统的混沌有着密切的联系,在计算机领域也有着重要的应用.
在一致收敛条件下,序列映射具有某些动力学性质,但是其极限函数不一定具有该动力学性质,如:序列映射是拓扑混合的,但是其极限函数不是拓扑混合的[1];序列映射具有初值敏感性,但是其极限函数不具有初值敏感性[2]. 因此,学者们开始在强一致收敛条件下研究极限函数的动力学性质,得到若干结果[3-13]. 如:在强一致收敛条件下,若序列映射{fn}是Li-Yorke混沌,则其极限函数f是Li-Yorke混沌[3];若序列函数{fn}是渐进周期的,则其极限函数f是渐进周期的[4];在强一致条件下, $\bigcap\limits_{m = 1}^\infty {\bigcup\limits_{n = m}^\infty {W\left( {{f_n}} \right) \subset W\left( f \right)} } $[5].
本文在文献[5]的基础上得到弱几乎周期点集的拓扑结构,并研究了强一致收敛下的周期序列跟踪性,以期促进强一致收敛下弱几乎周期点和周期序列跟踪性理论的发展.
1. 基本概念
定义1[1] 设(X, d)是度量空间,对∀n ∈$\mathbb{N}$+,fn: X→X连续,f: X→X连续. 称序列映射{fn}在X上强一致收敛于f,如果∀ε>0,∃n0 ∈$\mathbb{N}$+,当n>n0时,∀x ∈X,∀m≥0,有d(fnm(x), fm(x)) < ε. 记作${{f}_{n}}\xrightarrow{s}f$.
定义2[5] 设(X, d)是度量空间,f: X→X连续,x ∈X. 若对∀ε>0,∃N>0,对∀n≥0,有#({r: fr(x)∈B(x, ε), 0≤r < nN})≥n,则称x是f的弱几乎周期点. f的弱几乎周期点集用W(f)表示.
定义3[14] 设(X, d)是度量空间,f: X→X连续. 若对∀ε>0,∃δ>0, 使得当{xi}i≥0是X中f的δ-周期伪轨时,∃y ∈P(f),∃ {ni|ni+1>ni, ni ∈$\mathbb{N}$+}i=0∞, yε-跟踪{xni} i=0∞,则称f具有周期序列跟踪性.
定义4[14] 设(X, d)是度量空间,f: X→X连续. 若对∀ε>0,使得当{xi}i≥0是f的ε-周期伪轨时,∃y ∈P(f),∃ {ni|ni+1>ni, ni ∈$\mathbb{N}$+}i=0∞,yε-跟踪{xni} i=0∞,则称f具有fine周期序列跟踪性.
2. 主要结论
引理1[5] 设(X, d)是度量空间,f: X→X连续,序列映射{fn}连续且${{f}_{n}}\xrightarrow{s}f$,x∈X. 如果点x是序列映射{fn} 的弱几乎周期点,则x是f的弱几乎周期点.
定理1 设(X, d)是度量空间,f: X→X等度连续,序列映射{fn}连续且${{f}_{n}}\xrightarrow{s}f$. 如果$\mathop {\lim }\limits_{k \to \infty } {x_k}$=x且{xk}是序列映射{fn}的弱几乎周期点,则点x是极限映射f的弱几乎周期点.
证明 因为f是等度连续的,所以∀ε>0,∃0 < δ < ε/3,当d(z1, z2) < δ时,∀l≥0,有
$$ d\left(f^{l}\left(z_{1}\right), f^{l}\left(z_{2}\right)\right)<\frac{\varepsilon}{3} . $$ (1) 由于$\mathop {\lim }\limits_{k \to \infty } {x_k}$=x, 故对δ>0,∃m ∈$\mathbb{N}$+, 使得d(xm, x) < δ. 结合式(1)可得到:∀l≥0,有
$$ d\left(f^{l}\left(x_{m}\right), f^{l}(x)\right)<\frac{\varepsilon}{3} . $$ (2) 结合引理1,可知xm是f的弱几乎周期点,因此, 对ε/3>0,∃q>0,∀n≥0,有
$$ \#\left(\left\{r: f^{r}\left(x_{m}\right) \in B\left(x_{m}, \varepsilon / 3\right), 0 \leqslant r<n q\right\}\right) \geqslant n . $$ 令An={r: fr(xm)∈B(xm, ε/3), 0≤r < nq},Bn={r: fr(x)∈B(x, ε), 0≤r < nq}. 设r∈An,则
$$ d\left(f^{r}\left(x_{m}\right), x_{m}\right)<\frac{\varepsilon}{3} . $$ (3) 由式(2)、(3),可得
$$ \begin{array}{l} d\left(f^{r}(x), x\right)<d\left(f^{r}(x), f^{r}\left(x_{m}\right)\right)+d\left(f^{r}\left(x_{m}\right), x_{m}\right)+ \\ \ \ \ \ \ \ \ \ d\left(x_{m}, x\right)<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\delta<\varepsilon, \end{array} $$ 则r ∈Bn,An⊂Bn,故#Bn>#An≥n. 因此,点x是极限映射f的弱几乎周期点.
定理2 设(X, d)是度量空间,f: X→X等度连续. 如果序列映射{fn}连续且${{f}_{n}}\xrightarrow{s}f$,则limsup W(fn)⊂W(f).
证明 因为f是等度连续的,故∀ε>0,∃0 < δ < ε/4,当d(z1, z2) < δ时,∀l≥0,有
$$ d\left(f^{l}\left(z_{1}\right), f^{l}\left(z_{2}\right)\right)<\frac{\varepsilon}{4}. $$ (4) 又${{f}_{n}}\xrightarrow{s}f$,因此,对ε/4>0,∃N1 ∈$\mathbb{N}$+,当n>N1时,∀l≥0,∀x∈X,有
$$ d\left(f_{n}^{l}(x), f^{l}(x)\right)<\frac{\varepsilon}{4} \text { . } $$ (5) 设z ∈limsup W(fn),则∃m>N1 (m ∈$\mathbb{N}$+),使得
$$ W\left(f_{m}\right) \cap B(z, \delta) \neq \varnothing. $$ 取y∈W(fm)∩B(z, δ). 由于y ∈W(fm),故对ε/4>0,∃q>0,对∀n∈$\mathbb{N}$,有
$$ \#\left(\left\{r: f_{m}^{r}(y) \in B\left(y, \frac{\varepsilon}{4}\right), 0 \leqslant r<n q\right\}\right) \geqslant n. $$ 令An={r: fmr(y)∈B(y, ε/4), 0≤r < nq},Bn={r: fr(z)∈B(z, ε), 0≤r < nq}. 设r ∈An,有
$$ d\left(f_{m}^{r}(y), y\right)<\frac{\varepsilon}{4}, $$ (6) 则由y∈B(z, δ)和式(4),有
$$ d\left(f^{r}(y), f^{r}(z)\right)<\frac{\varepsilon}{4}. $$ (7) 再由式(5)~(7),可得
$$ \begin{array}{c} d\left(f^{r}(z), z\right)<d\left(f^{r}(z), f^{r}(y)\right)+d\left(f^{r}(y), f_{m}^{r}(y)\right)+ \\ d\left(f_{m}^{r}(y), y\right)+d(y, z)<\frac{\varepsilon}{4}+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}+\delta<\varepsilon, \end{array} $$ 则r ∈Bn,An⊂Bn,故#Bn>#An≥n,因此,z∈W(f),从而可得limsup W(fn)⊂W(f).
注1 在强一致收敛下,即使满足定理2的条件,也存在limsup W(fn)≠W(f)的情况.
例1 设I=[0, 1],对n ∈$\mathbb{N}$+,定义fn: X→X
$$ f_{n}(x)=\left\{\begin{array}{ll} 0 \ \ \ \ \left(x \in\left[0, \frac{1}{n}\right]\right), \\ x-\frac{1}{n} \ \ \ \ \left(x \in\left(\frac{1}{n}, 1\right]\right) . \end{array}\right. $$ 定义f: X→X
$$ f(x)=x \quad(x \in[0,1]), $$ 则limsup W(fn)≠W(f).
解 易知f是等度连续的, (0, 1)⊂W(f)且${{f}_{n}}\xrightarrow{s}f$. 下证∀n ∈$\mathbb{N}$+,∀x ∈(0, 1],∃m=m(n, x)∈$\mathbb{N}$+,当k≥m时,有
$$ f_{n}^{k}(x)=0 . $$ (8) 若x∈(0, $\frac{1}{n}$],当k≥1时,有fnk(x)=0.
若x∈($\frac{1}{n}, \frac{2}{n}$],当k≥2时,有fnk(x)=0.
若x∈($\frac{2}{n}, \frac{3}{n}$],当k≥3时,有fnk(x)=0.
依此类推,若x ∈($\frac{i}{n}, \frac{{i + 1}}{n}$] (0≤i≤n-1),则∃m=m(n, x)∈$\mathbb{N}$+,当k≥m时,有
$$ f_{n}^{k}(x)=0 , $$ 故式(8)成立. 设x ∈(0, 1]. 下面证明x ∉W(fn). 假设x ∈W(fn),则∀ε>0,∃m0>m, 使得fnm0(x)∈B(x, ε). 由式(8)可得fnm0(x)=0,故0 ∈B(x, ε),这与ε的任意性矛盾,故x ∉W(fn). 又0 ∈W(fn),则W(fn)={0}. 故limsup W(fn)= {0},因此limsup W(fn)≠W(f).
定理3 设(X, d)是度量空间,f: X→X连续,序列映射{fn}连续且${{f}_{n}}\xrightarrow{s}f$. 如果序列映射{fn}具有fine周期序列跟踪性,则极限映射f具有周期序列跟踪性.
证明 对∀ε>0,取0 < δ < ε/3. 设{xi}i=0∞是极限映射f的δ-周期伪轨,则当i≥0时,有
$$ d\left(f\left(x_{i}\right), x_{i+1}\right)<\delta . $$ (9) 由于${{f}_{n}}\xrightarrow{s}f$,故对δ>0,存在N1 ∈$\mathbb{N}$+,当n>N1时,∀l≥0,∀y∈X,有
$$ d\left(f_{n}^{l}(y), f^{l}(y)\right)<\delta . $$ (10) 取m>N1并固定m,根据式(10),当i≥0时,有
$$ d\left(f_{m}\left(x_{i}\right), f\left(x_{i}\right)\right)<\delta . $$ (11) 再由式(9)、(11),可得
$$ d\left(f_{m}\left(x_{i}\right), x_{i+1}\right)<d\left(f_{m}\left(x_{i}\right), f\left(x_{i}\right)\right)+d\left(f\left(x_{i}\right), x_{i+1}\right)<\frac{2 \varepsilon}{3}. $$ 由于映射fm具有fine周期序列跟踪性,则∃x ∈P(fm),∃ {ni|ni+1>ni, ni ∈$\mathbb{N}$+}i=0∞,当i≥0时,有
$$ d\left(f_{m}^{n_{i}}(x), x_{n_{i}}\right)<\frac{2 \varepsilon}{3}. $$ (12) 再由式(10)可得:当i≥0时,有
$$ d\left(f_{m}^{n_{i}}(x), f^{n_{i}}(x)\right)<\delta . $$ (13) 结合式(12)、(13)可得:当i≥0时,有
$$ d\left(f^{n_{i}}(x), x_{n_{i}}\right)<d\left(f^{n_{i}}(x), f_{m}^{n_{i}}(x)\right)+d\left(f_{m}^{n_{i}}(x), x_{n_{i}}\right)<\varepsilon. $$ 下面证明x ∈P(f). 因为x ∈P(fm),所以,∃k>0,使得fmk(x)=x. 根据式(10)可得
$$ d\left(f_{m}^{k}(x), f^{k}(x)\right)<\delta . $$ 故
$$ d\left(f^{k}(x), x\right)<d\left(f^{k}(x), f_{m}^{k}(x)\right)+d\left(f_{m}^{k}(x), x\right)<\varepsilon. $$ 由于ε是任意小的,则fk(x)=x,故x∈P(f),从而可得f具有周期序列跟踪性.
3. 总结
本文在强一致收敛下证明了周期序列跟踪性可以被遗传到极限函数,研究了弱几乎周期点集的拓扑结构,得到:(1)如果$\mathop {\lim }\limits_{k \to \infty } {x_k}$=x且点列{xk}是序列映射{fn}的弱几乎周期点,则x是极限映射f的弱几乎周期点;(2)limsup W(fn)⊂W(f). 文献[5]只证明了$\bigcap\limits_{m = 1}^\infty {\bigcup\limits_{n = m}^\infty {W\left( {{f_n}} \right) \subset W\left( f \right)} } $,而$\bigcap\limits_{m = 1}^\infty {\bigcup\limits_{n = m}^\infty {W\left( {{f_n}} \right) \subset \lim \sup \;W\left( {{f_n}} \right)} } $,说明本文的结果推广和改进了文献[5]的结论.
-
[1] 曾凡平, 严可颂, 刘新和. 强一致收敛与动力性质[J]. 广西大学学报(自然科学版), 2008, 33(3): 305-309. doi: 10.3969/j.issn.1001-7445.2008.03.023 ZENG F P, YAN K S, LIU X H. Strongly uniform convergence and some dynamical properties[J]. Journal of Guangxi University(Natural Science Edition), 2008, 33(3): 305-309. doi: 10.3969/j.issn.1001-7445.2008.03.023
[2] 王良平. 强一致收敛下的初值敏感性与等度连续性[J]. 浙江大学学报(理学版), 2012, 39(3): 270-272. doi: 10.3785/j.issn.1008-9497.2012.03.007 WANG L P. The sensitive dependence on initial conditions and the equicontinuity under strongly uniform convergence[J]. Journal of Zhejiang University(Science Edition), 2012, 39(3): 270-272. doi: 10.3785/j.issn.1008-9497.2012.03.007
[3] 席凤娟. 关于强一致收敛下的动力性状的遗传性以及复合动力系统的研究[D]. 西安: 西北大学, 2009. XI F J. The heredity of dynamical characters under strongly uniform convergence and the research of compo-site dynamical system[D]. Xi'an: Northwest University, 2009.
[4] 邓晓霞, 金渝光. 强一致收敛下的保持性和混沌性[J]. 西南师范大学学报(自然科学版), 2014, 39(2): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201402008.htm DENG X X, JIN Y G. On strongly uniform convergence of stability and chaotic properties[J]. Journal of Southwest China Normal University(Natural Science Edition), 2014, 39(2): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201402008.htm
[5] 王良平. 一致收敛下极限系统回复性的研究[J]. 广西师范学院学报(自然科学版), 2010, 27(4): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSZ201004002.htm WANG L P. Recurrence of the limit system under uniform convergence[J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 27(4): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSZ201004002.htm
[6] 秦斌, 严可颂, 徐雪群. 一致收敛下极限系统的传递性研究[J]. 广西师范学院学报(自然科学版), 2009, 26(3): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSZ200903002.htm QIN B, YAN K S, XU X Q. Transitivity of the limit system under uniform convergence[J]. Journal of Guangxi Normal University(Natural Science Edition), 2009, 26(3): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSZ200903002.htm
[7] 罗飞, 金渝光, 白丹莹. 强一致收敛条件下的集值De-vaney混沌性[J]. 西南大学学报(自然科学版), 2015, 37(2): 79-83. LUO F, JIN Y G, BAI D Y. Set-valued devaney chaos under the condition of strong uniform convergence[J]. Journal of Southwest University(Natural Science Edition), 2015, 37(2): 79-83.
[8] 罗飞, 金渝光. 强一致收敛条件下序列系统与极限系统的关联性[J]. 重庆师范大学学报(自然科学版), 2015, 32(4): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201504014.htm LUO F, JIN Y G. The condition of strong uniform convergence of relationship between sequence system and the limit system[J]. Journal of Chongqing Normal University(Natural Science), 2015, 32(4): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201504014.htm
[9] 杨忠选, 尹建东. 映射列一致收敛与敏感依懒性[J]. 南昌大学学报(工科版), 2013, 35(4): 385-391. YANG Z X, YIN J D. Uniform convergence of mappings and sensitivity[J]. Journal of Nanchang University(Engineering and Technology), 2013, 35(4): 385-391.
[10] 冀占江. 度量G-空间中强一致收敛条件下混合性的研究[J]. 数学的实践与认识, 2018, 48(11): 237-240. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201811032.htm JI Z J. The research of mixing property under the condition of strong uniform convergence in metric G-spaces[J]. Mathematics in Practice and Theory, 2018, 48(11): 237-240. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201811032.htm
[11] 向伟杰, 金渝光. 强一致收敛下的Li-Yorke混沌和分布混沌[J]. 重庆师范大学学报(自然科学版), 2018, 35(2): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201802017.htm XIANG W J, JIN Y G. Li-Yorke chaos and distributed chaos under strongly uniform convergence[J]. Journal of Chongqing Normal University(Natural Science), 2018, 35(2): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201802017.htm
[12] 邓晓霞, 金渝光. 序列函数在强一致收敛下极限函数轨道的稠密性[J]. 重庆工商大学学报(自然科学版), 2013, 30(2): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YZZK201302001.htm DENG X X, JIN Y G. Denseness of limit function orbit of sequence function under strong uniform convergence[J]. Journal of Chongqing Technology and Business University(Natural Science Edition), 2013, 30(2): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YZZK201302001.htm
[13] 冀占江, 张更容, 涂井先. 群作用下逆极限空间和乘积空间中的强G-跟踪性[J]. 华南师范大学学报(自然科学版), 2019, 51(6): 103-106. doi: 10.6054/j.jscnun.2019108 JI Z J, ZHANG G R, TU J X. The strong G-shadowing property of the product spaces and the inverse limit spaces of group action[J]. Journal of South China Normal Univer-sity(Natural Science Edition), 2019, 51(6): 103-106. doi: 10.6054/j.jscnun.2019108
[14] LEE K. Various shadowing properties and their equivalence[J]. Discrete and Continuous Dynamical Systems, 2005, 13(2): 533-539. http://www.researchgate.net/publication/228738197_Various_shadowing_properties_and_their_equivalence
计量
- 文章访问数: 502
- HTML全文浏览量: 216
- PDF下载量: 46