Processing math: 100%

强一致收敛下弱几乎周期点和周期序列跟踪性的研究

冀占江, 张更容

冀占江, 张更容. 强一致收敛下弱几乎周期点和周期序列跟踪性的研究[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 110-113. DOI: 10.6054/j.jscnun.2021033
引用本文: 冀占江, 张更容. 强一致收敛下弱几乎周期点和周期序列跟踪性的研究[J]. 华南师范大学学报(自然科学版), 2021, 53(2): 110-113. DOI: 10.6054/j.jscnun.2021033
JI Zhanjiang, ZHANG Gengrong. On the Weakly Almost Periodic Point and the Periodic Sequence Shadowing Property Under Strongly Uniform Convergence[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 110-113. DOI: 10.6054/j.jscnun.2021033
Citation: JI Zhanjiang, ZHANG Gengrong. On the Weakly Almost Periodic Point and the Periodic Sequence Shadowing Property Under Strongly Uniform Convergence[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(2): 110-113. DOI: 10.6054/j.jscnun.2021033

强一致收敛下弱几乎周期点和周期序列跟踪性的研究

基金项目: 

国家自然科学基金项目 11461002

广西壮族自治区自然科学基金项目 2020JJA110021

湖南省自然科学基金项目 2018JJ2074

2020年度广西壮族自治区高校中青年教师基础能力提升项目 2020KY17007

梧州学院校级重点项目 2020B007

详细信息
    通讯作者:

    张更容,Email:18152853519@163.com

  • 中图分类号: O189.11

On the Weakly Almost Periodic Point and the Periodic Sequence Shadowing Property Under Strongly Uniform Convergence

  • 摘要: 在强一致收敛下,研究了弱几乎周期点和周期序列跟踪性,得到弱几乎周期点和周期序列跟踪性的若干结论: (1)设序列映射{fn}强一致收敛于等度连续映射f,且点列{xk}是每个映射fn的弱几乎周期点. 若limkxk=x,则xf的弱几乎周期点. (2)若序列映射{fn}强一致收敛于等度连续映射f,则limsup W(fn)⊂W(f). (3)若fn具有fine周期序列跟踪性,则f具有周期序列跟踪性.
    Abstract: The weakly almost periodic point and the periodic sequence shadowing property are studied under strongly uniform convergence. Some conclusions about them are obtained. First, let the sequence map {fn} converge strongly uniformly to the equicontinuous map f and the sequence of points{xk}be the weakly almost periodic point of every map fn. If limkxk=x, then the point x is the weakly almost periodic point of the map f. Second, if the sequence map{fn}converges strongly uniformly to the equicontinuous map f, then limsup W(fn)⊂W(f). Third, if fn has the fine periodic sequence shadowing property, then f has periodic sequence shadowing property.
  • 周期序列跟踪性和弱几乎周期点是动力系统中非常重要的概念,与系统的混沌有着密切的联系,在计算机领域也有着重要的应用.

    在一致收敛条件下,序列映射具有某些动力学性质,但是其极限函数不一定具有该动力学性质,如:序列映射是拓扑混合的,但是其极限函数不是拓扑混合的[1];序列映射具有初值敏感性,但是其极限函数不具有初值敏感性[2]. 因此,学者们开始在强一致收敛条件下研究极限函数的动力学性质,得到若干结果[3-13]. 如:在强一致收敛条件下,若序列映射{fn}是Li-Yorke混沌,则其极限函数f是Li-Yorke混沌[3];若序列函数{fn}是渐进周期的,则其极限函数f是渐进周期的[4];在强一致条件下, $\bigcap\limits_{m = 1}^\infty {\bigcup\limits_{n = m}^\infty {W\left( {{f_n}} \right) \subset W\left( f \right)} } $[5].

    本文在文献[5]的基础上得到弱几乎周期点集的拓扑结构,并研究了强一致收敛下的周期序列跟踪性,以期促进强一致收敛下弱几乎周期点和周期序列跟踪性理论的发展.

    定义1[1]  设(X, d)是度量空间,对∀n ∈$\mathbb{N}$+fn: XX连续,f: XX连续. 称序列映射{fn}在X上强一致收敛于f,如果∀ε>0,∃n0 ∈$\mathbb{N}$+,当n>n0时,∀xX,∀m≥0,有d(fnm(x), fm(x)) < ε. 记作${{f}_{n}}\xrightarrow{s}f$.

    定义2[5]  设(X, d)是度量空间,f: XX连续,xX. 若对∀ε>0,∃N>0,对∀n≥0,有#({r: fr(x)∈B(x, ε), 0≤r < nN})≥n,则称xf的弱几乎周期点. f的弱几乎周期点集用W(f)表示.

    定义3[14]  设(X, d)是度量空间,f: XX连续. 若对∀ε>0,∃δ>0, 使得当{xi}i≥0Xfδ-周期伪轨时,∃yP(f),∃ {ni|ni+1>ni, ni ∈$\mathbb{N}$+}i=0, -跟踪{xni} i=0,则称f具有周期序列跟踪性.

    定义4[14]  设(X, d)是度量空间,f: XX连续. 若对∀ε>0,使得当{xi}i≥0是fε-周期伪轨时,∃yP(f),∃ {ni|ni+1>ni, ni ∈$\mathbb{N}$+}i=0-跟踪{xni} i=0,则称f具有fine周期序列跟踪性.

    引理1[5]  设(X, d)是度量空间,f: XX连续,序列映射{fn}连续且${{f}_{n}}\xrightarrow{s}f$,xX. 如果点x是序列映射{fn} 的弱几乎周期点,则xf的弱几乎周期点.

    定理1  设(X, d)是度量空间,f: XX等度连续,序列映射{fn}连续且${{f}_{n}}\xrightarrow{s}f$. 如果$\mathop {\lim }\limits_{k \to \infty } {x_k}$=x且{xk}是序列映射{fn}的弱几乎周期点,则点x是极限映射f的弱几乎周期点.

    证明  因为f是等度连续的,所以∀ε>0,∃0 < δ < ε/3,当d(z1, z2) < δ时,∀l≥0,有

    $$ d\left(f^{l}\left(z_{1}\right), f^{l}\left(z_{2}\right)\right)<\frac{\varepsilon}{3} . $$ (1)

    由于$\mathop {\lim }\limits_{k \to \infty } {x_k}$=x, 故对δ>0,∃m ∈$\mathbb{N}$+, 使得d(xm, x) < δ. 结合式(1)可得到:∀l≥0,有

    $$ d\left(f^{l}\left(x_{m}\right), f^{l}(x)\right)<\frac{\varepsilon}{3} . $$ (2)

    结合引理1,可知xmf的弱几乎周期点,因此, 对ε/3>0,∃q>0,∀n≥0,有

    $$ \#\left(\left\{r: f^{r}\left(x_{m}\right) \in B\left(x_{m}, \varepsilon / 3\right), 0 \leqslant r<n q\right\}\right) \geqslant n . $$

    An={r: fr(xm)∈B(xm, ε/3), 0≤r < nq},Bn={r: fr(x)∈B(x, ε), 0≤r < nq}. 设rAn,则

    $$ d\left(f^{r}\left(x_{m}\right), x_{m}\right)<\frac{\varepsilon}{3} . $$ (3)

    由式(2)、(3),可得

    $$ \begin{array}{l} d\left(f^{r}(x), x\right)<d\left(f^{r}(x), f^{r}\left(x_{m}\right)\right)+d\left(f^{r}\left(x_{m}\right), x_{m}\right)+ \\ \ \ \ \ \ \ \ \ d\left(x_{m}, x\right)<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\delta<\varepsilon, \end{array} $$

    rBnAnBn,故#Bn>#Ann. 因此,点x是极限映射f的弱几乎周期点.

    定理2  设(X, d)是度量空间,f: XX等度连续. 如果序列映射{fn}连续且${{f}_{n}}\xrightarrow{s}f$,则limsup W(fn)⊂W(f).

    证明  因为f是等度连续的,故∀ε>0,∃0 < δ < ε/4,当d(z1, z2) < δ时,∀l≥0,有

    $$ d\left(f^{l}\left(z_{1}\right), f^{l}\left(z_{2}\right)\right)<\frac{\varepsilon}{4}. $$ (4)

    又${{f}_{n}}\xrightarrow{s}f$,因此,对ε/4>0,∃N1 ∈$\mathbb{N}$+,当n>N1时,∀l≥0,∀xX,有

    $$ d\left(f_{n}^{l}(x), f^{l}(x)\right)<\frac{\varepsilon}{4} \text { . } $$ (5)

    z ∈limsup W(fn),则∃m>N1 (m ∈$\mathbb{N}$+),使得

    $$ W\left(f_{m}\right) \cap B(z, \delta) \neq \varnothing. $$

    yW(fm)∩B(z, δ). 由于yW(fm),故对ε/4>0,∃q>0,对∀n∈$\mathbb{N}$,有

    $$ \#\left(\left\{r: f_{m}^{r}(y) \in B\left(y, \frac{\varepsilon}{4}\right), 0 \leqslant r<n q\right\}\right) \geqslant n. $$

    An={r: fmr(y)∈B(y, ε/4), 0≤r < nq},Bn={r: fr(z)∈B(z, ε), 0≤r < nq}. 设rAn,有

    $$ d\left(f_{m}^{r}(y), y\right)<\frac{\varepsilon}{4}, $$ (6)

    则由yB(z, δ)和式(4),有

    $$ d\left(f^{r}(y), f^{r}(z)\right)<\frac{\varepsilon}{4}. $$ (7)

    再由式(5)~(7),可得

    $$ \begin{array}{c} d\left(f^{r}(z), z\right)<d\left(f^{r}(z), f^{r}(y)\right)+d\left(f^{r}(y), f_{m}^{r}(y)\right)+ \\ d\left(f_{m}^{r}(y), y\right)+d(y, z)<\frac{\varepsilon}{4}+\frac{\varepsilon}{4}+\frac{\varepsilon}{4}+\delta<\varepsilon, \end{array} $$

    rBnAnBn,故#Bn>#Ann,因此,zW(f),从而可得limsup W(fn)⊂W(f).

    注1  在强一致收敛下,即使满足定理2的条件,也存在limsup W(fn)≠W(f)的情况.

    例1  设I=[0, 1],对n ∈$\mathbb{N}$+,定义fn: XX

    $$ f_{n}(x)=\left\{\begin{array}{ll} 0 \ \ \ \ \left(x \in\left[0, \frac{1}{n}\right]\right), \\ x-\frac{1}{n} \ \ \ \ \left(x \in\left(\frac{1}{n}, 1\right]\right) . \end{array}\right. $$

    定义f: XX

    $$ f(x)=x \quad(x \in[0,1]), $$

    则limsup W(fn)≠W(f).

      易知f是等度连续的, (0, 1)⊂W(f)且${{f}_{n}}\xrightarrow{s}f$. 下证∀n ∈$\mathbb{N}$+,∀x ∈(0, 1],∃m=m(n, x)∈$\mathbb{N}$+,当km时,有

    $$ f_{n}^{k}(x)=0 . $$ (8)

    x∈(0, $\frac{1}{n}$],当k≥1时,有fnk(x)=0.

    x∈($\frac{1}{n}, \frac{2}{n}$],当k≥2时,有fnk(x)=0.

    x∈($\frac{2}{n}, \frac{3}{n}$],当k≥3时,有fnk(x)=0.

    依此类推,若x ∈($\frac{i}{n}, \frac{{i + 1}}{n}$] (0≤in-1),则∃m=m(n, x)∈$\mathbb{N}$+,当km时,有

    $$ f_{n}^{k}(x)=0 , $$

    故式(8)成立. 设x ∈(0, 1]. 下面证明xW(fn). 假设xW(fn),则∀ε>0,∃m0>m, 使得fnm0(x)∈B(x, ε). 由式(8)可得fnm0(x)=0,故0 ∈B(x, ε),这与ε的任意性矛盾,故xW(fn). 又0 ∈W(fn),则W(fn)={0}. 故limsup W(fn)= {0},因此limsup W(fn)≠W(f).

    定理3  设(X, d)是度量空间,f: XX连续,序列映射{fn}连续且${{f}_{n}}\xrightarrow{s}f$. 如果序列映射{fn}具有fine周期序列跟踪性,则极限映射f具有周期序列跟踪性.

    证明  对∀ε>0,取0 < δ < ε/3. 设{xi}i=0是极限映射fδ-周期伪轨,则当i≥0时,有

    $$ d\left(f\left(x_{i}\right), x_{i+1}\right)<\delta . $$ (9)

    由于${{f}_{n}}\xrightarrow{s}f$,故对δ>0,存在N1 ∈$\mathbb{N}$+,当n>N1时,∀l≥0,∀yX,有

    $$ d\left(f_{n}^{l}(y), f^{l}(y)\right)<\delta . $$ (10)

    m>N1并固定m,根据式(10),当i≥0时,有

    $$ d\left(f_{m}\left(x_{i}\right), f\left(x_{i}\right)\right)<\delta . $$ (11)

    再由式(9)、(11),可得

    $$ d\left(f_{m}\left(x_{i}\right), x_{i+1}\right)<d\left(f_{m}\left(x_{i}\right), f\left(x_{i}\right)\right)+d\left(f\left(x_{i}\right), x_{i+1}\right)<\frac{2 \varepsilon}{3}. $$

    由于映射fm具有fine周期序列跟踪性,则∃xP(fm),∃ {ni|ni+1>ni, ni ∈$\mathbb{N}$+}i=0,当i≥0时,有

    $$ d\left(f_{m}^{n_{i}}(x), x_{n_{i}}\right)<\frac{2 \varepsilon}{3}. $$ (12)

    再由式(10)可得:当i≥0时,有

    $$ d\left(f_{m}^{n_{i}}(x), f^{n_{i}}(x)\right)<\delta . $$ (13)

    结合式(12)、(13)可得:当i≥0时,有

    $$ d\left(f^{n_{i}}(x), x_{n_{i}}\right)<d\left(f^{n_{i}}(x), f_{m}^{n_{i}}(x)\right)+d\left(f_{m}^{n_{i}}(x), x_{n_{i}}\right)<\varepsilon. $$

    下面证明xP(f). 因为xP(fm),所以,∃k>0,使得fmk(x)=x. 根据式(10)可得

    $$ d\left(f_{m}^{k}(x), f^{k}(x)\right)<\delta . $$

    $$ d\left(f^{k}(x), x\right)<d\left(f^{k}(x), f_{m}^{k}(x)\right)+d\left(f_{m}^{k}(x), x\right)<\varepsilon. $$

    由于ε是任意小的,则fk(x)=x,故xP(f),从而可得f具有周期序列跟踪性.

    本文在强一致收敛下证明了周期序列跟踪性可以被遗传到极限函数,研究了弱几乎周期点集的拓扑结构,得到:(1)如果$\mathop {\lim }\limits_{k \to \infty } {x_k}$=x且点列{xk}是序列映射{fn}的弱几乎周期点,则x是极限映射f的弱几乎周期点;(2)limsup W(fn)⊂W(f). 文献[5]只证明了$\bigcap\limits_{m = 1}^\infty {\bigcup\limits_{n = m}^\infty {W\left( {{f_n}} \right) \subset W\left( f \right)} } $,而$\bigcap\limits_{m = 1}^\infty {\bigcup\limits_{n = m}^\infty {W\left( {{f_n}} \right) \subset \lim \sup \;W\left( {{f_n}} \right)} } $,说明本文的结果推广和改进了文献[5]的结论.

  • [1] 曾凡平, 严可颂, 刘新和. 强一致收敛与动力性质[J]. 广西大学学报(自然科学版), 2008, 33(3): 305-309. doi: 10.3969/j.issn.1001-7445.2008.03.023

    ZENG F P, YAN K S, LIU X H. Strongly uniform convergence and some dynamical properties[J]. Journal of Guangxi University(Natural Science Edition), 2008, 33(3): 305-309. doi: 10.3969/j.issn.1001-7445.2008.03.023

    [2] 王良平. 强一致收敛下的初值敏感性与等度连续性[J]. 浙江大学学报(理学版), 2012, 39(3): 270-272. doi: 10.3785/j.issn.1008-9497.2012.03.007

    WANG L P. The sensitive dependence on initial conditions and the equicontinuity under strongly uniform convergence[J]. Journal of Zhejiang University(Science Edition), 2012, 39(3): 270-272. doi: 10.3785/j.issn.1008-9497.2012.03.007

    [3] 席凤娟. 关于强一致收敛下的动力性状的遗传性以及复合动力系统的研究[D]. 西安: 西北大学, 2009.

    XI F J. The heredity of dynamical characters under strongly uniform convergence and the research of compo-site dynamical system[D]. Xi'an: Northwest University, 2009.

    [4] 邓晓霞, 金渝光. 强一致收敛下的保持性和混沌性[J]. 西南师范大学学报(自然科学版), 2014, 39(2): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201402008.htm

    DENG X X, JIN Y G. On strongly uniform convergence of stability and chaotic properties[J]. Journal of Southwest China Normal University(Natural Science Edition), 2014, 39(2): 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-XNZK201402008.htm

    [5] 王良平. 一致收敛下极限系统回复性的研究[J]. 广西师范学院学报(自然科学版), 2010, 27(4): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSZ201004002.htm

    WANG L P. Recurrence of the limit system under uniform convergence[J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 27(4): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSZ201004002.htm

    [6] 秦斌, 严可颂, 徐雪群. 一致收敛下极限系统的传递性研究[J]. 广西师范学院学报(自然科学版), 2009, 26(3): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSZ200903002.htm

    QIN B, YAN K S, XU X Q. Transitivity of the limit system under uniform convergence[J]. Journal of Guangxi Normal University(Natural Science Edition), 2009, 26(3): 10-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GXSZ200903002.htm

    [7] 罗飞, 金渝光, 白丹莹. 强一致收敛条件下的集值De-vaney混沌性[J]. 西南大学学报(自然科学版), 2015, 37(2): 79-83.

    LUO F, JIN Y G, BAI D Y. Set-valued devaney chaos under the condition of strong uniform convergence[J]. Journal of Southwest University(Natural Science Edition), 2015, 37(2): 79-83.

    [8] 罗飞, 金渝光. 强一致收敛条件下序列系统与极限系统的关联性[J]. 重庆师范大学学报(自然科学版), 2015, 32(4): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201504014.htm

    LUO F, JIN Y G. The condition of strong uniform convergence of relationship between sequence system and the limit system[J]. Journal of Chongqing Normal University(Natural Science), 2015, 32(4): 78-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201504014.htm

    [9] 杨忠选, 尹建东. 映射列一致收敛与敏感依懒性[J]. 南昌大学学报(工科版), 2013, 35(4): 385-391.

    YANG Z X, YIN J D. Uniform convergence of mappings and sensitivity[J]. Journal of Nanchang University(Engineering and Technology), 2013, 35(4): 385-391.

    [10] 冀占江. 度量G-空间中强一致收敛条件下混合性的研究[J]. 数学的实践与认识, 2018, 48(11): 237-240. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201811032.htm

    JI Z J. The research of mixing property under the condition of strong uniform convergence in metric G-spaces[J]. Mathematics in Practice and Theory, 2018, 48(11): 237-240. https://www.cnki.com.cn/Article/CJFDTOTAL-SSJS201811032.htm

    [11] 向伟杰, 金渝光. 强一致收敛下的Li-Yorke混沌和分布混沌[J]. 重庆师范大学学报(自然科学版), 2018, 35(2): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201802017.htm

    XIANG W J, JIN Y G. Li-Yorke chaos and distributed chaos under strongly uniform convergence[J]. Journal of Chongqing Normal University(Natural Science), 2018, 35(2): 93-97. https://www.cnki.com.cn/Article/CJFDTOTAL-CQSF201802017.htm

    [12] 邓晓霞, 金渝光. 序列函数在强一致收敛下极限函数轨道的稠密性[J]. 重庆工商大学学报(自然科学版), 2013, 30(2): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YZZK201302001.htm

    DENG X X, JIN Y G. Denseness of limit function orbit of sequence function under strong uniform convergence[J]. Journal of Chongqing Technology and Business University(Natural Science Edition), 2013, 30(2): 5-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YZZK201302001.htm

    [13] 冀占江, 张更容, 涂井先. 群作用下逆极限空间和乘积空间中的强G-跟踪性[J]. 华南师范大学学报(自然科学版), 2019, 51(6): 103-106. doi: 10.6054/j.jscnun.2019108

    JI Z J, ZHANG G R, TU J X. The strong G-shadowing property of the product spaces and the inverse limit spaces of group action[J]. Journal of South China Normal Univer-sity(Natural Science Edition), 2019, 51(6): 103-106. doi: 10.6054/j.jscnun.2019108

    [14]

    LEE K. Various shadowing properties and their equivalence[J]. Discrete and Continuous Dynamical Systems, 2005, 13(2): 533-539. http://www.researchgate.net/publication/228738197_Various_shadowing_properties_and_their_equivalence

计量
  • 文章访问数:  502
  • HTML全文浏览量:  216
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-04
  • 网络出版日期:  2021-04-28
  • 刊出日期:  2021-04-24

目录

/

返回文章
返回