EEG Emotion Recognition Based on Hybrid Neural Networks
-
摘要: 为保留脑电(Electroencephalogram,EEG)空间信息的同时充分挖掘EEG时序相关信息,提出了一种三维卷积神经网络(3-Dimensional Convolutional Neural Networks,3D-CNN)结合双向长短期记忆神经网络(Bidirectional Long Short-term Memory Neural Networks,BLSTM)的混合神经网络(3DCNN-BLSTM);为验证该模型的分类性能,在DEAP数据集和SEED数据集上进行情感识别实验. 实验结果表明3DCNN-BLSTM模型能有效学习EEG多通道间的相关性与时间维度信息且提高了情感分类性能:在DEAP数据集的二分类实验中,唤醒度和效价的情感识别平均准确率分别为93.56%和93.21%;在DEAP数据集的四分类实验中,情感识别平均准确率为90.97%;在SEED数据集的三分类实验中,情感识别平均准确率为98.90%.Abstract: A hybrid neural network (3DCNN-BLSTM) based on a 3-Dimensional Convolutional Neural Network (3D-CNN) combined with a Bi-directional Long Short-term Memory Neural Network (BLSTM) is proposed to preserve the spatial information of the EEG while taking full advantage of its time-related information. Emotion re-cognition experiments on DEAP and SEED datasets are carried out to evaluate the classification performance of the model. The experiment results show that the 3DCNN-BLSTM model can effectively learn the correlation between EEG multi-channels and time dimension information and improve the performance of emotion classification. The ave-rage accuracy of emotion recognition of arousal and valence in the two-classification experiments on DEAP dataset are 93.56% and 93.21% respectively; the average accuracy of emotion recognition in the four-classification experiments on DEAP dataset is 90.97%; and the average accuracy of emotion recognition in the three-classification experiments on SEED dataset is 98.90%.
-
Keywords:
- EEG /
- emotion recognition /
- 3D-CNN /
- BLSTM /
- hybrid neural network
-
-
表 1 6种特征的情感识别平均准确率
Table 1 The average accuracy of emotion recognition of six characteristics
% 特征 二分类实验 四分类实验 唤醒度 效价 PSD 77.36 76.09 63.71 SvdEn 87.91 86.62 84.31 PeEn 88.07 87.93 83.97 DE 88.62 87.60 84.13 SampEn 90.60 89.89 86.80 ApEn 93.56 93.21 90.97 表 2 5种模型的情感识别平均准确率
Table 2 The average accuracy of emotion recognition with five models
% 特征 二分类实验 四分类实验 唤醒度 效价 2D-CNN 74.49 74.21 60.25 LSTM 91.54 90.91 87.99 3D-CNN 92.74 92.22 89.10 BLSTM 92.37 91.72 89.12 3DCNN-BLSTM 93.56 93.21 90.97 表 3 8种方法在唤醒度和效价维度上的平均准确率
Table 3 The average accuracy of 8 methods on the dimensions of arousal and valence
表 4 7种方法在四分类实验的平均准确率
Table 4 The average accuracy of 7 methods in four-classification experiments
-
[1] MEI H, XU X M. EEG based emotion classification using convolutional neural network[C]//Proceedings of the IEEE International Conference on Security, Pattern Analy-sis, and Cybernetics. Shenzhen: IEEE, 2017: 130-135.
[2] TRIPATHI S, ACHARYA S, SHARMA R D, et al. Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2017: 4746-4752.
[3] MOON S, JANG S, LEE J, et al. Convolutional neural network approach for Eeg-based emotion recognition using brain connectivity and its spatial information[C]//Proceedings of 2018 IEEE International Conference on Acoustics, Speech and Signal Processing. Calgary, Canada: IEEE, 2018: 2556-2560.
[4] KWON Y H, SHIN S B, KIM S, et al. Electroencephalogra-phy based fusion two-dimensional (2D)-convolution neural networks (CNN) model for emotion recognition system[J]. Sensors, 2018, 18(5): 1383/1-13. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982398/
[5] KOELSTRA S, MUHL C, SOLEYMANI M, et al. DEAP: a database for emotion analysis using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3(1): 18-31. doi: 10.1109/T-AFFC.2011.15
[6] SALAMA E S, ELKHORIBI R A, SHOMAN M, et al. EEG-based emotion recognition using 3D convolutional neural networks[J]. International Journal of Advanced Computer Science and Applications, 2018, 9(8): 329-337.
[7] ALHAGRY S, FAHMY A A, ELKHORIBI R A, et al. Emotion recognition based on EEG using LSTM recurrent neural network[J]. International Journal of Advanced Computer Science and Applications, 2017, 8(10): 355-358. http://www.researchgate.net/publication/320802497_Emotion_Recognition_based_on_EEG_using_LSTM_Recurrent_Neural_Network
[8] XING X F, LI Z Q, XU T Y, et al. SAE+LSTM: a new framework for emotion recognition from multi-channel EEG[J]. Frontiers in Neurorobotics, 2019, 13: 37/1-14. http://www.researchgate.net/publication/333730290_SAELSTM_A_New_Framework_for_Emotion_Recognition_From_Multi-Channel_EEG
[9] WANG Y X, QIU S, LI J P, et al. EEG-based emotion recognition with similarity learning network[C]//Proceedings of 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society. Berlin: IEEE, 2019: 1209-1212.
[10] YANG Y L, WU Q F, QIU M, et al. Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network[C]//Proceedings of 2018 International Joint Conference on Neural Networks. Rio de Janeiro, Brazil: IEEE, 2018: 1-7.
[11] SHEN F Y, DAI G J, LIN G, et al. EEG-based emotion recognition using 4D convolutional recurrent neural network[J]. Cognitive Neurodynamics, 2020, 14(6): 815-828. doi: 10.1007/s11571-020-09634-1
[12] SHEYKHIVAND S, MOUSAVI Z, REZAⅡ T Y, et al. Recognizing emotions evoked by music using CNN-LSTM Networks on EEG Signals[J]. IEEE Access, 2020, 8: 139332-139345. doi: 10.1109/ACCESS.2020.3011882
[13] YIN Z, ZHAO M Y, WANG Y X, et al. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model[J]. Computer Methods and Programs in Biomedicine, 2017, 140: 93-110. doi: 10.1016/j.cmpb.2016.12.005
[14] ZHENG W L, LU B L. Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks[J]. IEEE Transactions on Autonomous Mental Development, 2015, 7(3): 162-175. doi: 10.1109/TAMD.2015.2431497
[15] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
[16] GRAVES A, SCHMIDHUBER J. Framewise phoneme cla-ssification with bidirectional LSTM and other neural network architectures[J]. Neural networks, 2005, 18(5/6): 602-610. http://www.sciencedirect.com/science/article/pii/S0893608005001206
[17] MATURANA D, SCHERER S. Voxnet: a 3d convolutional neural network for real-time object recognition[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, Germany: IEEE, 2015: 922-928.
[18] YANG Y L, WU Q F, FU Y, et al. Continuous convolutional neural network with 3d input for EEG-based emotion recognition[C]//International Conference on Neural Information Processing. Cham, Switzerland: Springer, 2018: 433-443.
[19] CHUNG S Y, YOON H J. Affective classification using Bayesian classifier and supervised learning[C]//Proceedings of 2012 12th International Conference on Control, Automation and Systems. JeJu Island, South Korea: IEEE, 2012: 1768-1771.
[20] CHAO H, DONG L, LIU Y L, et al. Emotion recognition from multiband EEG signals using CapsNet[J]. Sensors, 2019, 19(9): 2212/1-16. http://www.ncbi.nlm.nih.gov/pubmed/31086110
[21] ZHUANG N, ZENG Y, TONG L, et al. Emotion recognition from EEG signals using multidimensional information in EMD Domain[J]. BioMed Research International, 2017, 2017: 8317357/1-9. http://www.ncbi.nlm.nih.gov/pubmed/28900626
[22] YANG H, HAN J, MIN K, et al. A multi-column CNN model for emotion recognition from EEG signals[J]. Sensors, 2019, 19(21): 4736/1-12. http://www.ncbi.nlm.nih.gov/pubmed/31683608
[23] ZUBAIR M, YOON C. EEG based classification of human emotions using discrete wavelet transform[M]//IT Convergence and Security 2017. Singapore: Springer, 2018: 21-28.
[24] JADHAV N, MANTHALKAR R, JOSHI Y. Electroencephalography based emotion recognition using gray-level co-occurrence matrix features[C]//RAMAN B, KUMAR S, ROY P, et al, ed. Proceedings of the International Conference on Computer Vision and Image Processing. Singapore: Springer, 2016: 335-343.
[25] HATAMIKIA S, NASRABADI A M. Recognition of emotional states induced by music videos based on nonlinear feature extraction and SOM classification[C]//Procee-dings of 2014 21th Iranian Conference on Biomedical Engineering (ICBME). Tehran, Iran: IEEE, 2014: 333-337.
[26] ZHANG X Y, WANG W R, SHEN C Y, et al. Extraction of EEG components based on time - frequency blind source sepa-ration[C]//Proceedings of the International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Cham, Switzerland: Springer, 2017: 3-10.
[27] MARTÍNEZ-RODRIGO A, GARCÍA-MARTÍNEZ B, ALCARAZ R, et al. Study of electroencephalographic signal regularity for automatic emotion recognition[C]//Proceedings of the International Conference on Ubiquitous Computing and Ambient Intelligence. Cham, Switzerland: Springer, 2017: 766-777.
[28] LI J P, ZHANG Z X, HE H G. Hierarchical convolutional neural networks for EEG-based emotion recognition[J]. Cognitive Computation, 2018, 10(2): 368-380. doi: 10.1007/s12559-017-9533-x
[29] 魏琛, 陈兰岚, 张傲. 基于集成卷积神经网络的脑电情感识别[J]. 华东理工大学学报(自然科学版), 2019, 45(4): 614-622. https://www.cnki.com.cn/Article/CJFDTOTAL-HLDX201904014.htm WEI C, CHEN L L, ZHANG A. Emotion recognition of EEG based on ensemble convolutional neural networks[J]. Journal of East China University of Science and Technology, 2019, 45(4): 614-622. https://www.cnki.com.cn/Article/CJFDTOTAL-HLDX201904014.htm
[30] 田莉莉, 邹俊忠, 张见, 等. 基于改进的卷积神经网络脑电信号情感识别[J]. 计算机工程与应用, 2019, 55(22): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201922015.htm TIAN L L, ZOU J Z, ZHANG J, et al. Emotion recognition of EEG signal based on improved convolutional neural network[J]. Computer Engineering and Applications, 2019, 55(22): 99-105. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201922015.htm
-
期刊类型引用(2)
1. 郭贺媛熙,李利军,冯军,林鑫,李睿. 基于DNA杂交指示剂和银纳米棒阵列芯片构建氯霉素SERS适配体传感器的研究. 光谱学与光谱分析. 2023(11): 3445-3451 . 百度学术
2. 赵倩雯,李南希,陈琳琳,李红. 亚甲基蓝介导抗坏血酸氧化动力学的研究. 华南师范大学学报(自然科学版). 2018(06): 25-30 . 百度学术
其他类型引用(0)