Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

带干扰与注资的二维对偶模型限制分红问题

权俊亮, 胡华

权俊亮, 胡华. 带干扰与注资的二维对偶模型限制分红问题[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 97-102. DOI: 10.6054/j.jscnun.2020100
引用本文: 权俊亮, 胡华. 带干扰与注资的二维对偶模型限制分红问题[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 97-102. DOI: 10.6054/j.jscnun.2020100
QUAN Junliang, HU Hua. Restricted Dividends in the Two-dimension Dual Model under Diffusion and Capital Injection[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 97-102. DOI: 10.6054/j.jscnun.2020100
Citation: QUAN Junliang, HU Hua. Restricted Dividends in the Two-dimension Dual Model under Diffusion and Capital Injection[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 97-102. DOI: 10.6054/j.jscnun.2020100

带干扰与注资的二维对偶模型限制分红问题

基金项目: 

国家自然科学基金项目 11361044

宁夏回族自治区自然科学基金项目 2019AAC03038

详细信息
    通讯作者:

    胡华, 教授, Email:huhuanum@163.com

  • 中图分类号: O211.67

Restricted Dividends in the Two-dimension Dual Model under Diffusion and Capital Injection

  • 摘要: 研究了带干扰二维对偶模型中再注资且分红贴现利率变化的最优分红问题;运用随机控制中HJB方程,证明了最优分红策略是阈值策略,并且得到了累积分红折现期望值函数所满足的积分-微分方程,并用此方程得到收益服从指数分布时值函数的显性表达式.
    Abstract: The problem of optimal dividend payment in the two-dimension dual model with diffusion under capital injection and varying dividend discount rates was discussed. The HJB equation in the stochastic control model is used to prove that the optimal strategy is a threshold strategy and the integral-differential equation satisfied by the value function of the cumulative dividend discount expectation is obtained, and the explicit expression of the value function is obtained when the benefit obeys an exponential distribution.
  • 近年来,许多学者对一维对偶模型的最优分红问题[1-4]与注资问题[5-8]进行了深刻讨论.如:在分红有界的条件下,运用压缩映射不动点原理,采用Bellman递归算法讨论了对偶模型中带比例交易费再注资且分红贴现利率随机变化的最优分红问题[9];考虑了混合分红策略下具有扩散的对偶风险模型,通过拉普拉斯逆变换构造函数求解值函数与刻画破产时刻[10];考虑了对偶Lévy风险模型中巴黎破产问题,利用谱负Lévy过程的波动恒等式与相关的尺度函数,得到了巴黎破产前预期折现分红的显性表达式[11].

    随着一维对偶模型的研究深入,部分学者在一维对偶模型的基础上研究了二维风险模型的分红和资本注入问题.如:讨论了最优分红支付和资本注入问题,使其在二维复合泊松风险模型中构建了2个索赔之间的相关性,目标是最大限度地减少贴现分红支付减去受惩罚的贴现资本注入,通过求解相应的HJB(Hamilton-Jacobi-Bellman)方程,得到最优分红策略,并在理赔服从指数分布时解决分红与注资问题[12];研究了一类具有复合泊松剩余过程的保险公司2个分支的二维最优分红问题,该问题将索赔ci和保费bici/bi进行考虑,解决了最大期望累积贴现分红支付的随机控制问题,在相应的HJB方程中证明了该值函数所满足的方程存在最小粘性上解,并描述了最优策略[13];研究了二维对偶模型的最优控制问题,探讨了破产时刻的分红贴现值的期望值,得到了它所满足的积分-微分方程,并给出值函数的性质及其满足的HJB方程,通过求解HJB方程得到值函数的表达式[14];研究了具有资本交换协议、阈值分红策略和随机观察期的2家公司的经典风险模型,得到了描述预期分红贴现的积分-偏微分方程组,并针对不存在解析解的情况,提出了一种数值自配置方法[15];考虑了二维风险模型中最优分红问题,将最优值函数识别为HJB方程的最小粘性解,并给出了逼近数值的迭代方法[16].

    在文献[12]的基础上,本文研究了带干扰二维对偶模型中再注资且分红贴现利率变化的最优分红问题;在最优控制问题中,运用HJB方程,证明了最优分红策略是阈值策略,并且得到了累积分红折现期望值函数所满足的积分-微分方程,并用此方程得到收益服从指数分布时值函数的显性表达式.

    设在滤波概率空间{ΩF, {Ft}t≥0, P}中,投资公司中2类项目在t时刻的盈余分别为{X1(t)}t≥0、{X2(t)}t≥0,盈余过程为:

    (X1(t)X2(t))=(x1x2)(c1c2)t+(N1(t)+N0(t)n=1UnN2(t)+N0(t)n=1Vn)(t0), (1)

    其中,(x1,x2)T0为2类项目的初始储备金;(c1,c2)T0为2类项目对应的固定花费率;{N0(t)}{N1(t)}{N2(t)}是相互独立的泊松过程,其参数分别为λ0,λ1,λ2;(Un,Vn)Tn1是一列相互独立同分布的严格正的随机向量,其分布函数为(FU(u),FV(v)),表示在[0, t]上的收益额并与计数过程{N0(t)}{N1(t)}{N2(t)}相互独立.

    在式(1)中引入2类控制问题:分红与注资.假设(D1(t),D2(t))T(Z1(t),Z2(t))T分别为[0, t]中的累计分红量、累计注资量,具有右连左极,并且为关于{Ft}t0自适应的增过程,其中当t=0时,(D1(0),D2(0))T=(0,0)T(Z1(0),Z2(0))T=(0,0)T.

    受控盈余过程为:

    (X1(t)X2(t))=(x1x2)(c1c2)t+(N1(t)+N0(t)n=1UnN2(t)+N0(t)n=1Vn)(D1(t)D2(t))+(Z1(t)Z2(t))(t0). (2)

    为了更符合公司实际支付分红的情况,考虑公司额外不确定的花费与收入{W(t)}({W(t)}是标准的布朗运动),并且考虑公司的总体分红与注资情况.将2类项目的分红与注资简单求和:D(t)=D1(t)+D2(t),Z(t)=Z1(t)+Z2(t).将式(2)简写成

    Xπ(t)=xct+S(t)+σW(t)D(t)+Z(t)(t0), (3)

    其中,x=x1+x2,c=c1+c2S(t)=N1(t)+N0(t)n=1Un+N2(t)+N0(t)n=1Vnσ{W(t)}的干扰系数,π={D(t),Z(t)}表示一个可容许的策略,Π={π:π是可容许策略}.

    在式(3)中,假设单位时间盈余的预期增长为:

    μ=E[S(1)]c>0, (4)

    对于任意的t≥0,可得P[Xπ(t)0]=1.

    对任意的可容许策略πΠ, 定义运行函数Vπ(x)=Ex(0eδt dD(t)ϕ0eδt dZ(t)), 其中,δ>0是贴现因子,ϕ>1是注资惩罚因子.

    定义值函数为

    V(x)=supπΠ{Vπ(x)}. (5)

    如果存在策略π*使得Vx=Vπ(x),则称π*为最优策略.

    本节考虑在限制分红[17]条件下,带干扰二维对偶模型中再注资的最优分红问题:

    (1) D(t)=t0h(s)ds

    (2) 0h(t)h0<

    其中,h(t)为任何时刻的分红速度, h0为分红速度的最大值.用π={D(t),Z(t)}表示策略,其策略值函数为Vπ(x)=E[0eδth(t)dtϕ0eδt dZ(t)].

    首先,给出值函数V(x)的性质:

    引理1  [12]对任意x>y≥0,V(x)是增函数和凸函数,且

    h0δeλ(xy)c+h0+e(δ+λ0+λ1+λ2)(xy)c+h0(V(y)h0δ)V(x)h0δ,

    边界条件为V(0)=0limxVx=h0/δ.

    然后,根据最优控制理论[18],给出V(x)所满足的HJB方程:对于x≥0, 有

    max{max0h(x)h0Mh(x)g(x),g(x)ϕ}=0, (6)

    其中,

    Mh(x)g(x)=12σ2g(x)+h(x)(c+h(x))g(x)(δ+λ0+λ1+λ2)g(x)+λ00g(xw)dFW(w)+λ10g(xu)dFU(u)+λ20g(xv)dFV(v).

    因为金钱具有时间价值,且公司需避免破产情况发生,所以,应在公司盈余即将为0时进行注资,而且注资速度不宜过大,只需将公司资产维持在临界线上,直至下一次收入跳发生时停止注资,即g(x)ϕ=0当且仅当x=0时成立;由于公司在初始盈余为0<x<时不发生注资,但可能发生分红,则当0<x<时,值函数V(x)满足max0h(x)h0{Mh(x)g(x)}=0g(x)ϕ<0.

    方程(6)关于h(x)是线性的,因此,将参数h(x)在方程(6)中最大化,可得

    h(x)={0(g(x)1),h0(g(x)<1).

    g(x)是递增有界凸函数,则存在x=inf{x:g(x)1},使得

    h(x)={0(xbg(x)1),h0(x>bg(x)<1).

    定理1   设二阶连续可微函数g(x)C1是递增、有界的凸函数且是方程(6)的解,则对于任意的策略π,有g(x)Vπ(x),从而g(x)V(x).

    证明   给定一个可容许策略πΠ,定义D={s:Dπ(s_)Dπ(s)}, Z={s:Zπ(s_)Zπ(s)},记ˆDπ(t)=sD,st(Dπ(s)Dπ(s_))Dπ(t)的跳部分,而˜Dπ(t)=Dπ(t)ˆDπ(t)Dπ(t)的连续部分.类似地,ˆZπ(t)˜Zπ(t)分别表示Zπ(t)的跳部分、连续部分,根据Ito公式,可得

    eδtg(Xπ(t))g(x)=t0δeδsg(Xπ(s))ds+t0eδsg(Xπ(t))d˜Xπ(t)+t0σ22eδsg(Xπ(t))ds+ΔXπ(s)0steδs[g(Xπ(s)+ΔXπ(s))g(Xπ(s))]=t0eδs(M)g(Xπ(s))ds+t0σeδsg(Xπ(s))dW(s)t0eδsg(Xπ(s))d˜Dπ(s)+t0eδsg(Xπ(s))d˜Zπ(s)+sDZ,steδs[g(Xπ(s))g(Xπ(s))]+t00eδs[g(Xπ(s)+y)g(Xπ(s))]dyds+t00eδs[g(Xπ(s))g(Xπ(s)+y)]dyds=t0eδs(M)g(Xπ(s))ds+t0σeδsg(Xπ(s))dW(s)t0eδsg(Xπ(s))dDπ(s)+t0eδs[1g(Xπ(s))]dDπ(s)+t0ϕeδsg(Xπ(s))dZπ(s)+t0eδs[g(Xπ(s))ϕ]dZπ(s)+sDZ,steδs[g(Xπ(s))g(Xπ(s))(Xπ(s)Xπ(s))g(Xπ(s))]+t00eδs[g(Xπ(s)+y)g(Xπ(s))]dyds+t00eδs[g(Xπ(s))g(Xπ(s)+y)]dydst00eδs[g(Xπ(s))g(Xπ(s)y)]g(Xπ(s)+y)dyds. (7)

    由于max0h(x)h0{Mh(x)g(x)},对式(7)两边取数学期望,可得:

    \begin{array}{*{20}{l}} {g(x) \ge E\{ {{\rm{e}}^{ - \delta t}}g({X_{{\pi ^*}}}(t))\} + E\left\{ {\int_0^t {{{\rm{e}}^{ - \delta s}}} {\rm{d}}{D_{{\pi ^*}}}(s) - } \right.}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left. {\phi \int_0^t {{{\rm{e}}^{ - \delta s}}} {\rm{d}}{Z_{{\pi ^*}}}(s)} \right\}.} \end{array}

    t \to \infty 时,可得

    g(x) \ge {V_\pi }(x) = E\left[ {\int_0^\infty {{{\rm{e}}^{ - \delta t}}} h(t){\rm{d}}t - \phi \int_0^\infty {{{\rm{e}}^{ - \delta t}}} {\rm{d}}Z(t)} \right].

    定理2  给定策略 \pi _0^* = \left\{ {{D_{\pi _0^*}}(t), {Z_{\pi _0^*}}(t)} \right\},如果 \pi_{0}^{*}满足

    {{X_{\pi _0^*}}(t) = x - ct + S(t) + \sigma W(t) - {D_{\pi _0^*}}(t) + {Z_{\pi _0^*}}(t),}
    {\int_0^\infty {{I_{\{ t:{X_{{\pi _0}}}*(t) > 0\} }}} {\rm{d}}{Z_{\pi _0^*}}(t) = 0,{D_{{\pi ^*}}}(t) = \int_0^t {{h_0}} {I_{\{ t:{X_{{\pi _0}}}*(t) > {x^*}\} }}{\rm{d}}s,}

    其中, {x^*} = \inf \left\{ {z:{g^\prime }(z) \le 1} \right\} > 0,则V(x) = {V_{\pi _0^*}}(x) = g(x), \pi _0^* 为最优控制策略.

    证明   在策略\pi _0^* = \left\{ {{D_{\pi _0^*}}(t), {Z_{\pi _0^*}}(t)} \right\} 中,由于{x^*} = \inf \left\{ {z:{g^\prime }(z) \le 1} \right\} > 0 ,对式(7)取期望,得

    \begin{array}{l} {{\rm{e}}^{ - \delta t}}g({X_{\pi _0^*}}(t)) - g(x) = \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} {\int_0^t {{{\rm{e}}^{ - \delta s}}} (\mathcal{M})g({X_{\pi _0^*}}(s)){\rm{d}}s + \int_0^t \sigma {{\rm{e}}^{ - \delta s}}{g^\prime }({X_{\pi _0^*}}(s)){\rm{d}}W(s) - }\\ {\int_0^t {{{\rm{e}}^{ - \delta s}}} {g^\prime }({X_{\pi _0^*}}(s)){\rm{d}}{D_{\pi _0^*}}(s) + } \end{array}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} {\int_0^t {{{\rm{e}}^{ - \delta s}}} [1 - {g^\prime }({X_{\pi _0^*}}(s))]{\rm{d}}{D_{\pi _0^*}}(s) + }\\ {\int_0^t \phi {{\rm{e}}^{ - \delta s}}{g^\prime }({X_{\pi _0^*}}(s)){\rm{d}}{Z_{\pi _0^*}}(s) + }\\ {\int_0^t {{{\rm{e}}^{ - \delta s}}} [{g^\prime }({X_{\pi _0^*}}(s)) - \phi ]{\rm{d}}{Z_{\pi _0^*}}(s) + } \end{array}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} {\sum\limits_{s \in { \wedge _D} \cup { \wedge _Z},s \le t} {{{\rm{e}}^{ - \delta s}}} [g({X_{\pi _0^*}}(s)) - g({X_{\pi _0^*}}(s - )) - }\\ {({X_{\pi _0^*}}(s) - {X_{\pi _0^*}}(s - )){g^\prime }({X_{\pi _0^*}}(s - ))] + } \end{array}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} {\int_0^t {\int_0^\infty {{{\rm{e}}^{ - \delta s}}} } [g({X_{\pi _0^*}}(s - ) + y) - g({X_{\pi _0^*}}(s - ))]{\rm{d}}y{\rm{d}}s + }\\ {\int_0^t {\int_0^\infty {{{\rm{e}}^{ - \delta s}}} } [g({X_{\pi _0^*}}(s)) - g({X_{\pi _0^*}}(s - ) + y)]{\rm{d}}y{\rm{d}}s - } \end{array}\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} {\int_0^t {\int_0^\infty {{{\rm{e}}^{ - \delta s}}} } [g({X_{\pi _0^*}}(s)) - g({X_{\pi _0^*}}(s - ) - y)] \times }\\ {{g^\prime }({X_{\pi _0^*}}({s^ - }) + y){\rm{d}}y{\rm{d}}s.} \end{array} \end{array}

    t \to \infty 时,\mathop {\max }\limits_{0 \le h(x) \le {h_0}}\left\{ {{{\cal M}^{h(x)}}g(x)} \right\} \le 0,1 < g'\left( x \right) < \phi ,证毕.

    本节对初始盈余分类讨论,求解其对应值函数满足的积分-微分方程.

    定理3  当 0 \le x \le {x^*}时, V\left( x \right)满足的积分-微分方程为:

    \begin{array}{l} 0 = \frac{1}{2}{\sigma ^2}{V^{\prime \prime }}(x) - c{V^\prime }(x) - ({\lambda _0} + {\lambda _1} + {\lambda _2} + \delta )V(x) + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} {{\lambda _0}\int_0^{{x^*} - x} V (x + y){\rm{d}}{F_W}(y) + {\lambda _1}\int_0^{{x^*} - x} V (x + y){\rm{d}}{F_U}(y) + }\\ {{\lambda _2}\int_0^{{x^*} - x} V (x + y){\rm{d}}{F_V}(y) + {\lambda _0}\int_{{x^*} - x}^\infty {(x - {x^*} + y)} {\rm{d}}{F_W}(y) + }\\ {{\lambda _1}\int_{{x^*} - x}^\infty {(x - {x^*} + y)} {\rm{d}}{F_U}(y) + {\lambda _2}\int_{{x^*} - x}^\infty {(x - {x^*} + y)} {\rm{d}}{F_V}(y) + }\\ {{\lambda _0}V({x^*})[1 - {F_W}({x^*} - x)] + {\lambda _1}V({x^*})[1 - {F_U}({x^*} - x)] + }\\ {{\lambda _2}V({x^*})[1 - {F_V}({x^*} - x)].} \end{array} \end{array} (8)

    x > {x^*}时,V\left( x \right) 满足的积分-微分方程为:

    \begin{array}{*{20}{l}} {0 = \frac{1}{2}{\sigma ^2}{V^{\prime \prime }}(x) - (c + {h_0}){V^\prime }(x) - ({\lambda _0} + {\lambda _1} + {\lambda _2} + \delta )V(x) + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {h_0} + {\lambda _0}\int_0^\infty V (x + y){\rm{d}}{F_W}(y) + {\lambda _1}\int_0^\infty V (x + y){\rm{d}}{F_U}(y) + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\lambda _2}\int_0^\infty V (x + y){\rm{d}}{F_V}(y).} \end{array} (9)

    证明  当 0 \le x \le {x^*}时,取足够小的时间 \tau ,使得 x - c\tau > 0,在 \left( {0, \tau } \right)中存在4种情况:

    (1) 2类项目均无收益;

    (2) 第1类项目有收益,第2类项目无收益;

    (3) 第1类项目无收益,第2类项目有收益;

    (4) 2类项目均有收益.

    根据以上4种情况,值函数 V(x)为:

    \begin{array}{l} V(x) = {{\rm{e}}^{ - ({\lambda _0} + {\lambda _1} + {\lambda _2} + \delta )\tau }}V(x - c\tau + \sigma W(t)) + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} {{\lambda _1}\int_0^\tau {{{\rm{e}}^{ - ({\lambda _1} + \delta )t}}} \int_0^\infty V (x - ct + \sigma W(t) + y){\rm{d}}{F_U}(y){\rm{d}}t + }\\ {{\lambda _2}\int_0^\tau {{{\rm{e}}^{ - ({\lambda _2} + \delta )t}}} \int_0^\infty V (x - ct + \sigma W(t) + y){\rm{d}}{F_V}(y){\rm{d}}t + }\\ {{\lambda _0}\int_0^\tau {{{\rm{e}}^{ - ({\lambda _0} + \delta )t}}} \int_0^\infty V (x - ct + \sigma W(t) + y){\rm{d}}{F_W}(y){\rm{d}}t + o(\tau ).} \end{array} \end{array} (10)

    V(x - ct + \sigma W(t)) 泰勒展开,并取期望得到

    E(V(x - ct + \sigma W(t))) = V(x) - ct{V^\prime }(x) + \frac{{{\sigma ^2}}}{2}t{V^{\prime \prime }}(x) + o(t). (11)

    将式(11)代入式(10)中,关于 \tau 进行微分并且使得 \tau = 0,可证得式(8).利用上述方法类似可证得式(9)成立.

    注1  当x=x^{*}=0 时,可得c{V^\prime }(x) = {\lambda _0}\int_0^\infty y {\rm{d}}{F_W}(y) + {\lambda _1}\int_0^\infty y {\rm{d}}{F_U}(y) + {\lambda _2}\int_0^\infty y {\rm{d}}{F_V}(y) .由式(4)可得V^{\prime}(0)>1 .因此,存在x^{*}>0 ,对于 0 \leqslant x \leqslant x^{*}, 有 V^{\prime}(x) \geqslant 1.进而对于0 \leqslant x \leqslant x^{*} ,有V(x) \geqslant x .

    注2  为了计算方便,将式(8)写为

    \begin{array}{l} 0 = \frac{1}{2}{\sigma ^2}{V^{\prime \prime }}(x) - c{V^\prime }(x) - ({\lambda _0} + {\lambda _1} + {\lambda _2} + \delta )V(x) + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} {{\lambda _0}\int_x^{{x^*}} V (z){\rm{d}}{F_W}(z - x) + {\lambda _1}\int_x^{{x^*}} V (z){\rm{d}}{F_U}(z - x) + }\\ {{\lambda _2}\int_x^{{x^*}} V (z){\rm{d}}{F_V}(z - x) + {\lambda _0}\int_{{x^*} - x}^\infty {(x - {x^*} + y)} {\rm{d}}{F_W}(y) + }\\ {{\lambda _0}V({x^*})[1 - {F_W}({x^*} - x)] + {\lambda _1}V({x^*})[1 - {F_U}({x^*} - x)] + }\\ {{\lambda _1}\int_{{x^*} - x}^\infty {(x - {x^*} + y)} {\rm{d}}{F_U}(y) + {\lambda _2}\int_{{x^*} - x}^\infty {(x - {x^*} + y)} {\rm{d}}{F_V}(y) + }\\ {{\lambda _2}V({x^*})[1 - {F_V}({x^*} - x)].} \end{array} \end{array} (12)

    本节讨论当\sigma=0 时,收益\left(U_{n}, V_{n}\right)_{n \geqslant 1}^{\mathrm{T}} 服从指数分布[12]的情况.当f_{U}(y)=\alpha_{1} \mathrm{e}^{-\alpha_{1} y}, f_{V}(y)=\alpha_{2} \mathrm{e}^{-\alpha_{2} y} , f_{W}(y)=\frac{\alpha_{1} \alpha_{2}}{\alpha_{1}-\alpha_{2}}\left(\mathrm{e}^{-\alpha_{2} \gamma}-\mathrm{e}^{-\alpha_{1} y}\right)时,为了求解 V(x),将f_{U}(y)、 f_{V}(y)、 f_{W}(y) 代入式(12)中,可得

    \begin{array}{l} 0 = c{V^\prime }(x) + ({\lambda _0} + {\lambda _1} + {\lambda _2} + \delta )V(x) - \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} {{\lambda _0}\frac{{{\alpha _1}{\alpha _2}}}{{{\alpha _1} - {\alpha _2}}}\int_x^{{x^*}} V (z)({{\rm{e}}^{ - {\alpha _2}(z - x)}} - {{\rm{e}}^{ - {\alpha _1}(z - x)}}){\rm{d}}z - }\\ {{\lambda _2}V({x^*}){{\rm{e}}^{ - {\alpha _2}({x^*} - x)}} - {\lambda _1}{\alpha _1}{{\rm{e}}^{{\alpha _1}x}}\int_x^{{x^*}} V (z){{\rm{e}}^{ - {\alpha _1}z}}{\rm{d}}z - }\\ {{\lambda _2}{\alpha _2}{{\rm{e}}^{{\alpha _2}x}}\int_x^{{x^*}} V (z){{\rm{e}}^{ - {\alpha _2}z}}{\rm{d}}z - }\\ {{\lambda _0}\frac{{{\alpha _1}{\alpha _2}}}{{{\alpha _1} - {\alpha _2}}}\left( {\frac{1}{{{\alpha _2}}}{{\rm{e}}^{ - {\alpha _2}({x^*} - x)}} - \frac{1}{{{\alpha _1}}}{{\rm{e}}^{ - {\alpha _1}({x^*} - x)}}} \right) - }\\ {\frac{{{\lambda _1}}}{{{\alpha _1}}}{{\rm{e}}^{ - {\alpha _1}({x^*} - x)}} - \frac{{{\lambda _1}}}{{{\alpha _2}}}{{\rm{e}}^{ - {\alpha _2}({x^*} - x)}} - }\\ {{\lambda _0}\frac{{V({x^*})}}{{{\alpha _1} - {\alpha _2}}}({\alpha _1}{{\rm{e}}^{ - {\alpha _2}({x^*} - x)}} - {\alpha _2}{{\rm{e}}^{ - {\alpha _1}({x^*} - x)}}) - }\\ {{\lambda _1}V({x^*}){{\rm{e}}^{ - {\alpha _1}({x^*} - x)}}.} \end{array} \end{array} (13)

    对方程(13)应用算子 D\left( {D - {\alpha _1}I} \right) - {\alpha _2}\left( {D - {\alpha _1}I} \right),其中,D是对 V\left( x \right)的微分算子,I是对 V\left( x \right)的单位算子,可得

    \begin{array}{l} c{V^{\prime \prime \prime }}(x) - [{\lambda _0} + {\lambda _1} + {\lambda _2} + \delta - c({\alpha _1} - {\alpha _2})]{V^{\prime \prime }}(x) - \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} [{\alpha _1}{\alpha _2}c - {\alpha _1}({\lambda _2} + \delta ) - {\alpha _2}({\lambda _1} + \delta )]{V^\prime }(x) + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\alpha _1}{\alpha _2}\delta V(x) = 0. \end{array} (14)

    为了解方程(14),考虑特征方程的求根,令

    \begin{array}{*{20}{l}} {a(x) = c{x^3} - [{\lambda _0} + {\lambda _1} + {\lambda _2} + \delta - c({\alpha _1} - {\alpha _2})]{x^2} - }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} [{\alpha _1}{\alpha _2}c - {\alpha _1}({\lambda _2} + \delta ) - {\alpha _2}({\lambda _1} + \delta )]x + {\alpha _1}{\alpha _2}\delta = 0.} \end{array} (15)

    方程(15)有1个负根k1、2个正根k2k3,满足{k_1} < 0 < {k_2} < \left( {{\alpha _1} \wedge {\alpha _2}} \right) < {k_3},即

    V(x) = {M_1}{{\rm{e}}^{{k_1}x}} + {M_2}{{\rm{e}}^{{k_2}x}} + {M_3}{{\rm{e}}^{{k_3}x}}. (16)

    将式(16)代入式(13),并使得 {{\rm{e}}^{ - {\alpha _1}x}} {{\rm{e}}^{ - {\alpha _2}x}}的系数为0,可得

    \left\{ {\begin{array}{*{20}{l}} {\frac{{{M_1}{k_1}}}{{{k_1} - {\alpha _1}}} + \frac{{{M_2}{k_2}}}{{{k_2} - {\alpha _1}}} + \frac{{{M_3}{k_3}}}{{{k_3} - {\alpha _1}}} - \frac{1}{{{\alpha _1}}} = 0,}\\ {\frac{{{M_1}{k_1}}}{{{k_1} - {\alpha _2}}} + \frac{{{M_2}{k_2}}}{{{k_2} - {\alpha _2}}} + \frac{{{M_3}{k_3}}}{{{k_3} - {\alpha _2}}} - \frac{1}{{{\alpha _2}}} = 0.} \end{array}} \right. (17)

    由注1可得

    {V^\prime }({x^*}) = {M_1}{k_1}{{\rm{e}}^{{k_1}{x^*}}} + {M_2}{k_2}{{\rm{e}}^{{k_2}{x^*}}} + {M_3}{k_3}{{\rm{e}}^{{k_3}{x^*}}} = 1. (18)

    对式(18)进行求导,得

    {V^{\prime \prime }}({x^*}) = {M_1}k_1^2{{\rm{e}}^{{k_1}{x^*}}} + {M_2}k_2^2{{\rm{e}}^{{k_2}{x^*}}} + {M_3}k_3^2{{\rm{e}}^{{k_3}{x^*}}} = 0. (19)

    由式(17)、(18),可得

    \begin{array}{*{20}{l}} {{M_1} = \frac{{{{\rm{e}}^{ - {k_1}{x^*}}}}}{{{k_1}}} + \frac{{{{\rm{e}}^{ - {k_1}{x^*} + {k_3}{x^*}}}{k_3}A}}{{{k_1}B}} + \frac{1}{{{k_1}}}\left\{ {{{\rm{e}}^{ - {k_1}{x^*} + {k_3}{x^*}}}{k_3}\left[ {\left( {\frac{{{k_1}}}{{{k_1} - {\alpha _1}}} - } \right.} \right.} \right.}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left. {\left. {\left. {\frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}}}{{{\alpha _1}}}} \right){{\left( {\frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _1}}}} \right)}^{ - 1}} - C} \right]} \right\},} \end{array} (20)
    \begin{array}{l} {M_2} = \left( {\frac{{{k_1}}}{{{k_1} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}}}{{{\alpha _1}}}} \right){\left( {\frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _1}}}} \right)^{ - 1}} + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \begin{array}{*{20}{l}} {\left( {\frac{{{{\rm{e}}^{{k_3}{x^*}}}{k_1}{k_3}}}{{{k_1} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_3}}}{{{k_3} - {\alpha _1}}}} \right) \times \left( {\left( {\frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _1}}}} \right) \times } \right.}\\ {\left( {\frac{{{k_1}}}{{{k_1} - {\alpha _2}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}}}{{{\alpha _2}}}} \right) - \left( {\frac{{{k_1}}}{{{k_1} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}}}{{{\alpha _1}}}} \right) \times }\\ {\left. {\left. {\left( {\frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _2}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _2}}}} \right)} \right)} \right]/\left\{ {\left( {\frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _1}}}} \right)} \right. \times }\\ {\left[ {\left( {\frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_3}}}{{{k_3} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_3}}}{{{k_1} - {\alpha _1}}}} \right)\left( {\frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _2}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _2}}}} \right) - } \right.}\\ {\left. {\left. {\left( {\frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _2}}} - \frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _2}}}} \right)\left( {\frac{{{{\rm{e}}^{{k_3}{x^*}}}{k_1}{k_3}}}{{{k_1} - {\alpha _2}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_3}}}{{{k_3} - {\alpha _2}}}} \right)} \right]} \right\},} \end{array} \end{array} (21)
    {M_3} = A/B, (22)

    其中

    \begin{array}{*{20}{l}} {A = \left( {\frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _1}}}} \right)\left( {\frac{{{k_1}}}{{{k_1} - {\alpha _2}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}}}{{{\alpha _2}}}} \right) - }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {\frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _2}}} - \frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _2}}}} \right)\left( {\frac{{{k_1}}}{{{k_1} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}}}{{{\alpha _1}}}} \right),} \end{array}
    \begin{array}{*{20}{l}} {B = \left( {\frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_3}}}{{{k_3} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_3}{x^*}}}{k_1}{k_3}}}{{{k_1} - {\alpha _1}}}} \right)\left( {\frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _2}}} - \frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _2}}}} \right) - }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {\frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _1}}}} \right)\left( {\frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_3}}}{{{k_3} - {\alpha _2}}} - \frac{{{{\rm{e}}^{{k_3}{x^*}}}{k_1}{k_3}}}{{{k_1} - {\alpha _2}}}} \right),} \end{array}
    \begin{array}{l} C = \left( {\frac{{{{\rm{e}}^{{k_3}{x^*}}}{k_1}{k_3}}}{{{k_1} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_3}}}{{{k_3} - {\alpha _1}}}} \right)\left[ {\left( {\frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _1}}}} \right) \times } \right.\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( { - \frac{{{k_1}}}{{{k_1} - {\alpha _2}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}}}{{{\alpha _2}}}} \right) - \left( {\frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _2}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _2}}}} \right) \times \\ \left. {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( { - \frac{{{k_1}}}{{{k_1} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}}}{{{\alpha _1}}}} \right)} \right]/\left[ {\left( {\frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _1}}}} \right) \times } \right.\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ { - \left( {\frac{{{{\rm{e}}^{{k_3}{x^*}}}{k_1}{k_3}}}{{{k_1} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_3}}}{{{k_3} - {\alpha _1}}}} \right)\left( {\frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_2}}}{{{k_1} - {\alpha _2}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_2}}}{{{k_2} - {\alpha _2}}}} \right) + } \right.\\ \left. {\left. {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left( {\frac{{{{\rm{e}}^{{k_2}{x^*}}}{k_1}{k_3}}}{{{k_1} - {\alpha _1}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_3}}}{{{k_3} - {\alpha _1}}}} \right)\left( {\frac{{{{\rm{e}}^{{k_3}{x^*}}}{k_1}{k_3}}}{{{k_1} - {\alpha _2}}} - \frac{{{{\rm{e}}^{{k_1}{x^*}}}{k_1}{k_3}}}{{{k_3} - {\alpha _2}}}} \right)} \right]} \right\}. \end{array}

    将式(20)~(22)代入式(19),可得关于x*的表达式,则σ=0时,值函数的显性表达式为:

    V(x;{x^*}) = \left\{ {\begin{array}{*{20}{l}} {{M_1}{{\rm{e}}^{{k_1}x}} + {M_2}{{\rm{e}}^{{k_2}x}} + {M_3}{{\rm{e}}^{{k_3}x}}\quad (0 \le x < {x^*}),}\\ {x - {x^*} + V({x^*};{x^*})\quad (x \ge {x^*}).} \end{array}} \right.

    利用上述方法,类似可得σ≠0时,值函数V\left( x \right) 的表达式.

    本文通过二维对偶模型中限制分红与资本注入问题的HJB方程,证明了最优策略存在当且仅当{x^{* = }}{\rm{inf\{ }}z:{g^\prime }z \le 1\} > 0 ,并且得到了在限制的贴现分红与注资之差的值函数满足的积分-微分方程,用此方程得到收益服从指数分布时值函数的显性表达式.后续研究可尝试对二维对偶模型中干扰参数σ进行分类求解,使该模型更切合实际情况.

  • [1]

    AVANZI B, GERBER H U, SHIU E S W. Optimal dividends in the dual model[J]. Mathematics and Econo-mics, 2007, 41(1):111-123.

    [2]

    AVANZI B, SHEN J, WONG B. Optimal dividends and capital injections in the dual model with diffusion[J]. Astin Bull, 2011, 41(2):611-644. http://www.ams.org/mathscinet-getitem?mr=2858788

    [3]

    YAO D J, YANG H L, WANG R M. Optimal financing and dividend strategies in a dual model with proportional costs[J]. Journal of Industrial and Management Optimization, 2010, 6(4):761-777. http://www.researchgate.net/publication/267137990_Optimal_financing_and_dividend_strategies_in_a_dual_model_with_proportional_costs

    [4]

    YAO D J, YANG H L, WANG R M. Optimal financing and dividend strategies in a dual model with proportional and fixed transaction costs[J]. European Journal of Opera-tional Research, 2010, 6(4):761-777. http://www.researchgate.net/publication/267137990_Optimal_financing_and_dividend_strategies_in_a_dual_model_with_proportional_costs

    [5]

    BAYRAKTAR E, KYPRIANOU A, YAMAZAKI K. On optimal dividends in the dual model[J]. Astin Bull, 2013, 43(3):359-372. http://www.oalib.com/paper/4104870

    [6]

    BAYRAKTAR E, KYPRIANOU A, YAMAZAKI K. Optimal dividends in the dual model under transaction costs[J]. Mathematics and Economics, 2014, 54:133-143. http://www.sciencedirect.com/science/article/pii/s016766871300190x

    [7]

    ZHAO Y X, YAO D J. Optimal dividend and capital injection problem with a random time horizon and a ruin penalty in a dual model[J]. Applied Mathematics-A Journal of Chinese Universities, 2015, 30(3):325-339. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=GXYY201503006

    [8]

    ZHAO Y X, WANG R M, YAO D J. Optimal dividend and capital injection problem in a dual model with a random time horizon[J]. Journal of Optimization Theory and App-lications, 2014, 157:272-295.

    [9] 邓丽, 郑华, 彭小飞.随机利率下带注资的对偶模型最优分红问题[J].华南师范大学学报(自然科学版), 2020, 52(2):107-113. http://d.wanfangdata.com.cn/periodical/hnsfdx202002015

    DENG L, ZHEN H, PENG X F. The optimal dividend problem in dual model with capital injections by stochastic interest rates[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(2):107-113. http://d.wanfangdata.com.cn/periodical/hnsfdx202002015

    [10]

    LIU Z, CHEN P, HU Y J. On the dual risk model with diffusion under a mixed dividend strategy[J]. Applied Mathematics and Computation, 2020, 376:115-125. http://www.sciencedirect.com/science/article/pii/S0096300320300849

    [11]

    CHEN Y, KRISTINA P S, LI Z. Parisian ruin with a threshold dividend strategy under the dual Lévy risk model[J]. Mathematics and Economics, 2020, 90:135-150. http://www.sciencedirect.com/science/article/pii/S0167668719304196

    [12] 张帅琪, 刘国欣.带注资的二维复合泊松模型的最优分红[J].运筹学学报, 2012, 16(3):119-131. http://www.ixueshu.com/document/2824c82399116b7692792a1a0a1cf97b318947a18e7f9386.html

    ZHANG S Q, LIU G X. Optimal dividend payments of the two-dimensional compound Poisson risk model with capi-tal injection[J]. Operations Research Transactions, 2012, 16(3):119-131. http://www.ixueshu.com/document/2824c82399116b7692792a1a0a1cf97b318947a18e7f9386.html

    [13]

    AZCUE P N, PALMOWSKI Z. Optimal dividend payments for a two-dimensional insurance risk process[J]. European Actuarial Journal, 2019, 9(1):241-272. http://arxiv.org/abs/1603.07019

    [14] 马永光.基于二维对偶模型的最优分红策略[D].银川: 宁夏大学, 2018.

    MA Y G. Optimal dividend strategy based on two-dimensional dual model[D]. Yinchuan: Ningxia University, 2018.

    [15]

    LIU Y G, CHEN X, ZHUO W Y. Dividends under threshold dividend strategy with randomized observation periods and capital-exchange agreement[J]. Journal of Computational and Applied Mathematics, 2020, 366:1-15. http://ideas.repec.org/h/wsi/wschap/9789811221958_0017.html

    [16]

    HANSJORG A, AZCUE P, MULER N. Optimal dividend strategies for two collaborating insurance companies[J]. Advances in Applied Probability, 2017, 49(2):515-548. http://www.oalib.com/paper/3942974

    [17]

    KULENKO N, SCHMIDLI H. Optimal dividend strategies in a Cramér-Lundberg model with capital injections[J]. Mathematics and Economics, 2008, 43:270-278. http://www.sciencedirect.com/science/article/pii/S0167668708000747

    [18]

    SCHMIDLI H. Stochastic control in insurance[M]. London:Springer, 2008.

  • 期刊类型引用(1)

    1. 桂有利,陈丽芳,任越. 基于对偶模型的企业最优扩张策略研究. 中国集体经济. 2023(09): 98-101 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  598
  • HTML全文浏览量:  226
  • PDF下载量:  45
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-05-20
  • 网络出版日期:  2021-01-04
  • 刊出日期:  2020-12-24

目录

/

返回文章
返回