Loading [MathJax]/jax/output/SVG/jax.js

UV-B预处理对拟南芥uvr8-2突变体响应干旱胁迫的影响

向花, 吕桂珍, 李韶山

向花, 吕桂珍, 李韶山. UV-B预处理对拟南芥uvr8-2突变体响应干旱胁迫的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 67-73. DOI: 10.6054/j.jscnun.2020096
引用本文: 向花, 吕桂珍, 李韶山. UV-B预处理对拟南芥uvr8-2突变体响应干旱胁迫的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(6): 67-73. DOI: 10.6054/j.jscnun.2020096
XIANG Hua, LV Guizhen, LI Shaoshan. The Effect of UV-B Pretreatment on the Drought Response of Arabidopsis uvr8-2 Mutants[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 67-73. DOI: 10.6054/j.jscnun.2020096
Citation: XIANG Hua, LV Guizhen, LI Shaoshan. The Effect of UV-B Pretreatment on the Drought Response of Arabidopsis uvr8-2 Mutants[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(6): 67-73. DOI: 10.6054/j.jscnun.2020096

UV-B预处理对拟南芥uvr8-2突变体响应干旱胁迫的影响

基金项目: 

国家自然科学基金项目 31670266

广东省自然科学基金项目 2017030313115

广东省高等学校珠江学者岗位计划资助项目 2012

详细信息
    通讯作者:

    李韶山,教授,Email:lishsh@scnu.edu.cn

  • 中图分类号: Q945.79

The Effect of UV-B Pretreatment on the Drought Response of Arabidopsis uvr8-2 Mutants

  • 摘要: 以拟南芥uvr8-2突变体植株为材料,研究UV-B预处理对植株响应干旱胁迫的影响以及植物激素在此过程中的作用.实验结果表明:从形态观察到生理指标,UV-B预处理显著提高了拟南芥uvr8-2突变体的干旱适应性,与野生型Ler的结果一致;UV-B预处理显著提高了拟南芥uvr8-2突变体抗氧化酶SOD、POD、CAT活性,抗氧化酶基因PODCAT的表达量,以及植物激素ABA、JA、SA的质量分数,降低了细胞膜受损程度.由此推测:UV-B预处理诱导uvr8-2植株的干旱适应性中存在一条不依赖于UVR8的信号转导途径,即通过增加植物逆境响应激素ABA、JA和SA的质量分数,调控抗氧化酶基因CATPOD表达和增强抗氧化酶活性,从而缓解干旱胁迫下拟南芥的叶片萎焉、相对含水量下降等现象.
    Abstract: The effect of UV-B pretreatment on the drought response of Arabidopsis thaliana uvr8-2 mutants and the role of plant hormones in this process were investigated. The following results were obtained. Both morphological observation and physiological indicators showed that UV-B pretreatment significantly improved the drought adaptability of uvr8-2 mutants, which was consistent with the result of research on wild-type Landsberg erecta (Ler). The activities of antioxidant enzymes (SOD, POD, and CAT) were significantly increased upon UV-B pretreatment in Arabidopsis uvr8-2 mutants. The expression of antioxidant enzyme genes (POD and CAT) and the levels of plant hormones (ABA, JA and SA) also were increased. In addition, the degree of cell membrane damage was reduced. The fact that UV-B pretreatment induced the drought adaptability of uvr8-2 mutant implies that the signaling involved in the process is UVR8-independent, namely, the UV-B pretreatment induced drought adaptability by increasing plant hormones such as ABA, JA and SA to enhance the activity of antioxidant enzymes and antioxidant enzyme genes CAT and POD so as to alleviate the withering of leaves and the decreasing of relative water content under drought stress.
  • 分数阶导数具有非局部性, 相比整数阶导数,它能更精确地描述现实世界中具有记忆和遗传性质的问题.因此,分数阶微分方程已被广泛应用于众多领域,如半导体物理、弹性力学、生物学异速生长、金融学期权定价、信号处理和分形理论等[1-2].但分数阶导数的非局部性使得这类方程难以获得解析解, 或者解析解需要用特殊函数来表达, 这不利于实际应用.所以, 研究其数值解显得尤为重要.

    本文研究如下时间分数阶次扩散方程的初边值问题:

    {C0Dαtu(x,t)=μxxu(x,t)+f(x,t)((x,t)[0,1]×(0,T]),u(x,0)=u0(x)(x[0,1]),u(0,t)=u(1,t)=0(t(0,T]), (1)

    其中, 0 < α < 1, μ>0, 0CDtα是Caputo分数阶微分算子, 其定义为

    C0Dαtu(x,t)=1Γ(1α)t0(ts)αsu(x,s)ds,

    这里

    Γ(·)表示Gamma函数.

    时间分数阶次扩散方程是一类重要的数学模型,常被用于描述运输中的反常扩散行为,能很好地刻画长时记忆的流通过程.已有很多学者研究了有关时间分数阶次扩散方程的数值方法[3-12],如:给出了一种隐式差分格式, 讨论了格式的收敛阶,证明了该格式无条件稳定[3];研究了二维问题的一种高阶紧致差分格式[5];给出了一种有限元方法,并证明了所得全离散格式具有超收敛性[4];给出了一种时间方向具有二阶收敛阶的有限元计算格式,证明了该格式无条件稳定且空间方向具有最优收敛阶[6];利用经典有限元方法讨论了时间分数阶对流扩散方程和电报方程的数值解[7-8];给出了一种最小二乘谱方法[9];运用时空谱方法讨论了方程(1)的数值解,并获得了先验误差估计[10].

    但上述方法并未涉及全离散所得线性方程组的快速求解问题.事实上,对于大尺度、高精度的实际问题而言,全离散格式将导出一个大规模的线性方程组,而求解该方程组需要消耗巨大的计算量.

    为了高效求解全离散所得线性方程组,本文研究了方程(1)的一种多尺度快速方法.首先,基于时间方向采用L1逼近和空间方向采用多尺度Galerkin逼近建立全离散格式,给出了全离散格式的误差估计;然后,利用矩阵分裂策略设计快速求解该全离散格式的多层扩充算法, 并证明了该算法具有最优收敛阶.

    本节介绍一些相关记号和引理, 以方便后文引用.没有特别说明, 后文中出现的字母c表示与时间和空间步长无关的常数, 不同的位置可能表示不一样的常数.

    I=(a, b), (·, ·)和‖·‖0分别表示空间L2(I)上的内积和范数. H01(I)是满足零边界条件的函数构成的Sobolev空间, 配备内积及其相应的范数如下:

    u,v1:=Iu(x)v(x)dx,u1=u,u1(u,vH10(I)).

    XnH01(I)的有限维子空间, 其元素是以a+ba2n(j=1, 2, …, 2n-1)为节点的次数不超过r的分片多项式.则易知, 序列{Xn}是嵌套的, 即XnXn+1(nN).于是,Xn具有如下多尺度分解:

    Xn=Xn1Wn=X0W1W2Wn,

    其中,WnXn-1Xn中的正交补空间, 此处正交指的是在内积〈·,·〉1意义下.定义正交投影算子(Ritz投影)Pn:H01(I)→Xn如下:

    uPnu,v1=(x(uPnu),xv)=0(uH10(I),vXn).

    引理1[5]  设m, r, r≥1是正整数, uHm(I)∩H01(I).如果1≤mr+1, 则

    uPnupc2(mp)num(p=0,1).

    本节给出时间分数阶次扩散方程(1)的L1-多尺度Galerkin全离散格式, 并推导其误差估计.

    τ为时间步长, 记tk=kτ(k=0, 1, …, NT; NTτ=T), uk:= u(·, tk).定义离散算子

    Dατuk=ταΓ(1α)[ukk1j=1(akj1akj)ukak1u0],

    其中, aj=(j+1)1-α-j1-α (j≥0).根据文献[2], 如果uC2([0, T]; L2(I)), 则用Dταuk逼近分数阶导数0CDαtku的截断误差为:

    C0DαtkuDατuk0cτ2α. (2)

    取多尺度空间Xn作为空间方向的逼近子空间, 结合上述记号, 得到L1-多尺度Galerkin全离散格式:对每个时间层t=tk(k=1, 2, …, NT), 求unkXn, 使得

    {(Dατukn,vn)+μ(xukn,xvn)=(fk,vn)(vnXn),u0n=Pnu0, (3)

    其中, fk=f(x, tk).

    定理1  对每个时间层t=tk (k=1, 2, …, NT), 全离散格式(3)都存在唯一解unk.如果问题(1)的解析解uC2([0, T]; Hr(I)∩H01(I)), 0CDtαuHr-2(I), 且u0Hr(I), 则全离散格式具有如下误差估计

    ukukn0c(2nr+τ2α)(1kNT). (4)

    证明  先证解的存在唯一性.为此, 只需要考虑对应的齐次方程只有零解.根据离散导数Dτα的定义可知, 方程(3)对应的齐次方程为

    (ukn,vn)+μ(xukn,xvn)=0(vnXn).

    vn=unk, 则

    0=(ukn,ukn)+μ(xukn,xukn)=ukn20+μukn21, (5)

    从而unk=0.解的存在唯一性获证.

    接下来论证误差估计.由方程(1)可知, 真解uk满足方程

    (Dατuk,vn)+μ(xuk,xvn)=(fk,vn)+(DατukC0Dαtku,vn). (6)

    enk=Pnuk-unk (k=0, 1, 2, …, NT).将方程(6)减方程(3), 并取vn=enk,则enk满足方程

    (Dατekn,ekn)+μ(xekn,xekn)=(Dατ(Pnukuk),ekn)(DατukC0Dαtku,ekn). (7)

    由于1=a0>a1>a2>…>an>0, 则由Cauchy-Schwarz不等式、三角不等式及引理2, 有

    (Dατekn,ekn)=ταΓ(2α)(eknk1i=1(aki1aki)einak1e0n,ekn)ταΓ(2α)ekn20(k1i=1((aki1aki)×ein20+ekn202)ak1e0n20+ekn202)=ταΓ(2α)(ekn20k1i=1(aki1aki)ein20ak1e0n20),
    (Dατ(Pnukuk),ekn)|=|(DατPnukC0DαtkPnu+C0DαtkPnuC0Dαtku+C0DαtkuDατuk,ekn)|(DατPnukC0DαtkPnu0+C0DαtkPnuC0Dαtku0+C0DαtkuDατuk0)ekn0(cτ2α+c2nr)ekn0(cτ2α+c2nr)2+12ekn20.

    再注意到式(7)左端第二项非负, 则有

    (τ2αΓ(2α)12)ekn20c(τ2α+2nr)2+k1k=1(aki1aki)ein20+ak1e0n20,

    适当选取步长τ, 使得τ2αΓ(2α)12>0, 由Gronwall's不等式, 有

    ekn0c(τ2α+2nr).

    从而由三角不等式及引理2,有

    ukukn0ukPnuk0+ekn0c(τ2α+2nr).

    证毕.

    注1  当取vn=Dατenk时, 可类似地证明全离散格式的H1收敛阶为

    ukukn1c(τ2α+2n(r1)).

    基底的多尺度特性使得全离散格式(3)对应的线性方程组的系数矩阵具有高低频层次结构, 因此, 本文利用多层扩充法进行高效求解.为了方便叙述, 先将全离散格式改写成:

    (xukn,xv)+λ(ukn,v)=(λ(k1j=1(akj1akj)ujn+ak1u0n)+fk,v), (8)

    其中,λ:=ταμΓ(1α)un0=Pnu0.记Zn={0, 1, 2, …, n-1},w(i)表示空间Wi的维数, 指标集Jn:= {(i, j):jZw(i), iZn}.在t=tk处, 将unk=(i,j)Jncijkwij(x)代入式(8), 得矩阵形式的线性方程组

    (En+Kn)Ckn=Fkn, (9)

    其中,En=[(w′ij, w′i′j′):(i, j), (i′, j′)∈Jn], Kn=λ[(wij, wi′j′):(i, j), (i′, j′) ∈Jn], Cnk=[cijk]Τ(i, j)∈Jn, Fnk=λ(k1j=1(ak-j-1-ak-j)Cnj+ak-1Cn0)+[(fk, wij)]Τ(i, j)∈Jn.由基底的正交性可知En是单位矩阵.

    为使用多层扩充算法, 先将Kn进行分块.对m0, p, p′∈N+, 记

    Km00,0:=Km0,Km0p,p:=Km0+p,m0+p,
    Km00,p:=[Ki1,i:iZm0+1,i=m0+p],
    Km0p,0:=[Ki,i:i=m0+p,iZm0+1],

    于是, 当n=m0+m时, Kn可表示为分块矩阵Km0+m=[Ki′, im0:i′, iZm+1].根据矩阵高低频层次特点, 把Km0+m分解成2个矩阵之和, 即

    Km0+m=KLm0,m+KHm0,m,

    其中

    KLm0,m:=[Km00,0Km00,1Km00,m000000],
    KHm0,m:=[000Km01,0Km01,1Km01,mKm0m,0Km0m,1Km0m,m].

    m0m是2个固定的正整数, m0 < <n,则多层扩充算法可描述为:

    算法1  求解线性方程组(8)的多层扩充算法

    Step 1.对n=m0, 解方程(Em0+Km0)Ckm0= Fkm0, 得到Ckm0.

    Step 2.令Ckm0, 0:=Ckm0l=1.执行以下步骤:

    Step 2.1  分别将KLm0, l-1KHm0, l-1扩充为KLm0, lKHm0, l;

    Step 2.2  将Ckm0, l-1扩充为ˉCm0,l:=[Cm0,l10];

    Step 2.3  解方程(Em0+l+KLm0, l)Ckm0, l=fkm0+l+KHm0, lCm0, l, 获得Ckm0, lRx(m0+l).

    Step 3.令l=l+1, 返回执行Step 2.1, 直到l=m,从而得到多层扩充解ukm0, m=(i,j)JnCkijwij.

    该算法先在一个维数较低的初始层上求得一个较粗的近似解, 然后逐层扩充, 每次扩充只需要解一个系数矩阵(Em0+K0, 0m0)相同而仅右端项不同的低维线性方程组, 获得解的低频部分, 而高频部分通过矩阵向量乘积获得.由此可见, 该算法比直接在高维逼近子空间上解线性方程组要简单高效.文献[13-15]证明了多层扩充解ukm0, m与直接求解线性方程组得到的解ukm0+m有相同的收敛阶, 即保持最优收敛阶:

    ukm0,mukpc(τ2α+2(m0+m)(rp))(p=0,1).

    本节以数值算例来验证本文的理论估计和算法1的计算效果.考虑方程(1),其中

    u0(x)=2sin(2πx),f(x,t)=[Γ(3+α)2t2+t1αΓ(2α)+4π2(t2+α+t+2)]sin(2πx),

    其真解u=(tα+2+t+2)sin(2πx).

    为验证算法1的时间收敛阶, 选取二次多尺度正交基(基底具体构造可参看文献[14]), 并在多层扩充求解时取(m0, m)=(2, 5), 时间步长τ分别取为1/4、1/8、1/16、1/32、1/64、1/128, 对不同的α进行测试.由所得结果(图 1)可以看到:数值结果与理论的时间收敛阶2-α相吻合.

    图  1  u2, 5(x, t)在t=1时刻的时间收敛阶
    Figure  1.  The temporal convergence order of u2, 5(x, t) at t=1

    在空间方向, 分别取线性基底和二次基底进行数值计算, 用算法1时,初始层m0分别取为4和2, m表示扩充的层数, x(n)表示相应逼近子空间的维数, n=m0+m.收敛阶为:

    order=log2uum0,mpuum0,m+1p,

    这里p可取1和0, 分别对应H1L2范数.对于线性和二次基底, 其H1范数的理论收敛阶分别为1和2;其L2范数的理论收敛阶分别为2和3.由表 1表 2可以看到:算法1所得的数值结果与理论收敛阶非常吻合.

    表  1  线性基底的数值结果
    Table  1.  The numerical results for linear basis
    m x(n) p=1 p=0 条件数
    u-u4, m1 Order u-u4, m0 Order
    0 15 2.009 5e+00 3.925 7e-02 1.216 4
    1 31 1.006 7e+00 0.997 2 9.823 9e-03 1.998 6 1.217 6
    2 63 5.035 8e-01 0.999 3 2.457 4e-03 1.999 2 1.217 9
    3 127 2.518 2e-01 0.999 8 6.143 7e-04 1.999 9 1.217 9
    4 255 1.259 1e-01 1.000 0 1.535 3e-04 2.000 6 1.217 9
    5 511 6.295 7e-02 1.000 0 3.831 5e-05 2.002 5 1.218 0
    6 1 023 3.147 8e-02 1.000 0 9.509 9e-06 2.010 4 1.218 0
    7 2 047 1.573 9e-02 1.000 0 2.316 5e-06 2.037 5 1.218 0
    下载: 导出CSV 
    | 显示表格

    利用Matlab中的Cond命令, 计算了系数矩阵En+Kn的条件数, 从表 1表 2可知条件数一致有界.

    表  2  二次基底的数值结果
    Table  2.  The numerical results for quadratic basis
    m x(n) p=1 p=0 条件数
    u-u2, m1 Order u-u2, m0 Order
    0 7 1.577 5e+00 6.062 9e-02 1.215 1
    1 15 4.049 8e-01 1.961 7 7.804 1e-03 2.957 7 1.217 4
    2 31 1.019 1e-01 1.990 5 9.825 6e-04 2.989 6 1.217 8
    3 63 2.552 0e-02 1.997 6 1.230 5e-04 2.997 4 1.217 9
    4 127 6.382 6e-03 1.999 4 1.539 5e-05 2.998 7 1.217 9
    5 255 1.595 8e-03 1.999 9 1.990 7e-06 2.951 1 1.218 0
    下载: 导出CSV 
    | 显示表格

    在计算效率方面, 对比算法1与Gauss迭代法在线性基底下的数值结果.由对比结果(图 2)可知:算法1具有更高的效率, 而且问题规模越大, 其计算优势越明显.

    图  2  算法1与Gauss迭代法的计算时间对比
    Figure  2.  The comparison of computational time between algorithm 1 and the Gauss iteration method

    本文利用L1-多尺度Galerkin方法离散时间分数阶次扩散方程, 对所得全离散格式建立了多层扩充算法, 理论分析和数值算例证明了该算法具有最优收敛阶,提高了求解效率.对于含有非线性源项f(u, t)的非线性时间分数阶次扩散方程,可先用f(unk-1, t)来逼近f(unk, t),以将问题线性化,然后利用多层扩充算法快速求解.此外, 对时间分数阶导数, 若能用更高效的方法来离散(比如SOE法[13]), 或者用更高阶的逼近格式, 将有助于进一步提高时间分数阶次扩散方程的求解效率.

  • 图  1   UV-B预处理对拟南芥植株表型的影响

    奇数列的植株(1,3,5,7,9,11,13,15)为野生型Ler,偶数列的植株(2,4,6,8,10,12,14,16)为uvr8-2突变体

    Figure  1.   The effect of UV-B pretreatment on phenotype of Arabidopsis

    图  2   UV-B预处理对拟南芥叶片相对含水量的影响

    Figure  2.   The effect of UV-B pretreatment on relative water content in leaves of Arabidopsis

    图  3   UV-B预处理对拟南芥植株抗氧化酶活性的影响

    Figure  3.   The effect of UV-B pretreatment on antioxidant enzyme activity of Arabidopsis

    图  4   UV-B预处理对拟南芥叶片细胞膜渗透率的影响

    Figure  4.   The effect of UV-B pretreatment on membrane leakage rate in leaves of Arabidopsis

    图  5   UV-B预处理对拟南芥植物激素质量分数的影响

    Figure  5.   The effect of UV-B pretreatment on plant hormones of Arabidopsis

    图  6   UV-B预处理对拟南芥植株抗氧化酶基因表达量的影响

    Figure  6.   The effect of UV-B pretreatment on antioxidant gene expression of Arabidopsis

    表  1   实时荧光定量PCR所用引物序列

    Table  1   Primers for real-time PCR

    基因编号 基因名 引物(5’→3’)
    At3g18780 Actin 2 F:GCTCTTCAGGAGCAATACGAAG
    R:GTTGGGATGAACCAGAAGGA
    At4g33420 POD F:ATGACTTACTACATGATGAGCTGTCC
    R:CAGTGTTGTCTTTCGTTGAATCTAG
    At4g35090 CAT F:AACTCCGCCTGCTGCTGTCTG
    R:ATAGGGCATCAATCCATC
    下载: 导出CSV
  • [1]

    CALDWELL M M, BALLARE C L, BORNMAN J F, et al. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors[J]. Photochemical & Photobiological Sciences, 2003, 2:29-38. http://www.bioone.org/servlet/linkout?suffix=bibr10&dbid=16&doi=10.1653%2F024.096.0112&key=10.1039%2Fb700019g

    [2]

    SIDDIQUI M H, AL-WHAIBI M H, BASA LAH M O. Role of nitric oxide in tolerance of plants to abiotic stress[J]. Protoplasma, 2011, 248(3):447-455. doi: 10.1007/s00709-010-0206-9

    [3]

    MACKERNESS S A H, JOHN C F, JOHN B, et al. Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide[J]. FEBS Letters, 2001, 489(2/3):237-242. http://onlinelibrary.wiley.com/resolve/reference/PMED?id=11165257

    [4]

    FEDINA I, NEDEVA D, GEORGIEVA K, et al. Methyl jas-monate counteract UV-B stress in barley seedlings[J]. Journal of Agronomy and Crop Science, 2009, 195(3):204-212. http://www.onacademic.com/detail/journal_1000034643823810_390f.html

    [5]

    DRILIAS P, KARABOURNIOTIS G, LEVIZOU E, et al. The effects of enhanced UV-B radiation on the Mediterranean evergreen sclerophyll Nerium oleander depend on the extent of summer precipitation[J]. Functional Plant Biology, 1997, 24(3):301-306. http://new.med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_JJ0212075444

    [6]

    SCHMIDT A M, ORMROD D P, LIVINGSTON N J, et al. The interaction of ultraviolet-B radiation and water deficit in two Arabidopsis thaliana genotypes[J]. Annals of Botany, 2000, 85:571-575. http://aob.oxfordjournals.org/content/85/4/571.full

    [7]

    HE L H, JIA X Y, GAO Z Q, et al. Genotype-dependent responses of wheat (Triticum aestivum L.) seedlings to drought, UV-B radiation and their combined stresses[J]. African Journal of Biotechnology, 2011, 10(20):4046-4056. http://www.researchgate.net/publication/228492852_Genotype-dependent_responses_of_wheat_Triticum_aestivum_L_seedlings_to_drought_UV-B_radiation_and_their_combined_stresses

    [8]

    JANSEN M A K. Ultraviolet-B radiation effects on plants: induction of morphogenic responses[J]. Physiologia Plantarum, 2002, 116(3):423-429. doi: 10.1034/j.1399-3054.2002.1160319.x

    [9]

    RIZZINI L, FAVORY J J, CLOIX C, et al. Perception of UV-B by the Arabidopsis UVR8 protein[J]. Science, 2011, 332(6025):103-106. doi: 10.1126/science.1200660

    [10]

    WU D, HU Q, YAN Z, et al. Structural basis of ultraviolet-B perception by UVR8[J]. Nature, 2012, 484:214-219. http://europepmc.org/abstract/MED/22388820

    [11]

    QIAN C Z, MAO W W, LIU Y, et al. Dual-source nuclear monomers of UV-B light receptor direct photomorphogenesis in Arabidopsis[J]. Molecular Plant, 2016, 9(12):1671-1674. http://d.g.wanfangdata.com.cn/Periodical_fzzw-e201612014.aspx

    [12]

    CLOIX C, KAISERLI E, HEILMANN M, et al. C-terminal region of the UV-B photoreceptor UVR8 initiates signaling through interaction with the COP1 protein[J]. Proceedings of the National Academy of Sciences, USA, 2012, 109(40):16366-16370. http://www.ncbi.nlm.nih.gov/pubmed/22988111/

    [13]

    FAVORY J J, STEC A, GRUBER H. Interaction of COP1 and UVR8 regulates UV-B-induced photomorphogenesis and stress acclimation in Arabidopsis[J]. EMBO Journal, 2009, 28(5):591-601. doi: 10.1038/emboj.2009.4/full

    [14]

    POULSON M E, BOEGER M R T, DONAHUE R A. Response of photosynthesis to high light and drought for Arabidopsis thaliana grown under a UV-B enhanced light regime[J]. Photosynthesis Research, 2006, 90(1):79-90. doi: 10.1007/s11120-006-9116-2

    [15]

    JIANG L, WANG Y, LI Q F, et al. Arabidopsis STO/BBX24 negatively regulates UV-B signaling by interacting with COP1 and repressing HY5 transcriptional activity[J]. Cell Research, 2012, 22(6):1046-1057. http://europepmc.org/articles/PMC3474703

    [16]

    DIAS M C, OLIVEIRA H, COSTA A, et al. Improving elms performance under drought stress: the pretreatment with abscisic acid[J]. Environmental and Experimental Botany, 2014, 100:64-73. http://www.sciencedirect.com/science/article/pii/S0098847213002244

    [17] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000:267-268.
    [18]

    MAEHLY A C, CHANCE B. The assay of catalases and peroxidases[J]. Methods of Biochemical Analysis, 2006, 1:357-424. http://europepmc.org/abstract/MED/13193536

    [19]

    SINHA A K. Colorimetric assay of catalase[J]. Analytical Biochemistry, 1972, 47(2):389-394. http://qjmed.oxfordjournals.org/lookup/external-ref?access_num=4556490&link_type=MED&atom=%2Fqjmed%2F101%2F6%2F449.atom

    [20]

    YAN B, DAI Q, LIU X, et al. Flooding induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves[J]. Plant Soil, 1996, 179(2):261-268. doi: 10.1007/BF00009336

    [21]

    MAYURA D, MAHESH B, KAUR J P. Changes in antioxidant activity in Gmelina arborea (Verbenaceae) inoculated with Glomus fasciculatum under drought stress[J]. Archives of Phytopathology and Plant Protection, 2011, 44(2):113-126. doi: 10.1080/03235400902927261

    [22] 李绪行, 殷蔚薏, 邵莉楣, 等.黄腐酸增强小麦抗旱能力的生理生化机制初探[J].植物学通报, 1992, 9(2):44-46. http://www.cnki.com.cn/Article/CJFDTotal-ZWXT199202008.htm

    LI X X, YIN W Y, SHAO L M, et al. Preliminary investigation of physiological and biochemical mechanisms on drought-resistance of wheat enhanced by leaf-spraying fulvic acid[J]. Chinese Bulletin of Botany, 1992, 9(2):44-46. http://www.cnki.com.cn/Article/CJFDTotal-ZWXT199202008.htm

    [23] 刘星, 苏良辰, 张拜宏, 等.异源表达花生基因AhGLK1对拟南芥glk1glk2突变体表型特征及抗旱性的影响[J].华南师范大学学报(自然科学版), 2020, 52(3):78-84. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=HNSF202003012

    LIU X, SU L C, ZHANG B H, et al. The effect of heterologous expression of Peanut Gene AhGLK1 on the phenotypic characteristics and drought resistance of Arabidopsis glk2glk2 mutants[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3):78-84. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=HNSF202003012

    [24] 张富存, 何雨红, 郑有飞, 等. UV-B辐射增加对小麦的影响[J].南京气象学院学报, 2003, 26(4):545-551. http://d.wanfangdata.com.cn/Periodical/njqxxyxb200304014

    ZHANG F C, HE Y H, ZHENG Y F, et al. Effect of enhanced UV-B radiation on wheat[J]. Journal of Nanjing Institute of Meteorology, 2003, 26(4):545-551. http://d.wanfangdata.com.cn/Periodical/njqxxyxb200304014

    [25] 王传海, 郑有飞, 何都良, 等.紫外辐射UV-B增加对小麦株高和节间细胞长度影响的初步研究[J].中国农学通报, 2004, 20(1):77-78. http://www.cnki.com.cn/Article/CJFDTotal-ZNTB200401024.htm

    WANG C H, ZHEN Y F, HE D L, et al. A primary study on plant height and cell length of winter wheat in response to enhanced ultraviolet-B radiation[J]. Chinese Agricultural Science Bulletin, 2004, 20(1):77-78. http://www.cnki.com.cn/Article/CJFDTotal-ZNTB200401024.htm

    [26]

    YIN L, ZHANG M, LI Z, et al. Enhanced UV-B radiation increases glyphosate resistance in velvetleaf (Abutilon theophrasti)[J]. Photochemistry and Photobiology, 2012, 88(6):1428-1432. http://www.ncbi.nlm.nih.gov/pubmed/22943570

    [27]

    POULSON M E, DONAHUE R A, KONVALINKA J, et al. Enhanced tolerance of photosynthesis to high-light and drought stress in Pseudotsuga menziesii seedlings grown in ultraviolet-B radiation[J]. Tree Physiology, 2002, 22(12):829-838. http://treephys.oxfordjournals.org/content/22/12/829.short

    [28]

    VANHAELEWYN L, PRINSE E, STRAETEN D V D, et al. Hormone-controlled UV-B responses in plants[J]. Journal of Experimental Botany, 2016, 67(15):4469-4482. doi: 10.1093/jxb/erw261

    [29] 李长宁, SRIVASTAVA M K, 农倩, 等.水分胁迫下外源ABA提高甘蔗抗旱性的作用机制[J].作物学报, 2010, 36(5):863-870. http://d.wanfangdata.com.cn/periodical/zuowxb201005020

    LI C N, SRIVASTAVA M K, NONG Q, et al. Mechanism of tolerance to drought in sugarcane plant enhanced by foliage dressing of abscisic acid under water stress[J]. Acta Agronomica Sinica, 2010, 36(5):863-870. http://d.wanfangdata.com.cn/periodical/zuowxb201005020

    [30] 刘杰.水杨酸对黑麦草抗旱性的影响[D].哈尔滨: 东北林业大学, 2009.

    LIU J. The effect of SA on seedlings drought resistance of Lolium perenne Linn[D]. Harbin: Northeast Forestry University, 2009.

    [31]

    KIM J M, TO T K, MATSUI A, et al. Acetate-mediated novel survival strategy against drought in plants[J]. Nature Plants, 2017, 3(7):17097/1-7. http://europepmc.org/abstract/MED/28650429

    [32] 易小林, 杨丙贤, 宗学凤, 等.信号分子水杨酸减缓干旱胁迫对紫御谷光合和膜脂过氧化的副效应[J].生态学报, 2011, 31(1):67-74. http://d.wanfangdata.com.cn/periodical/stxb201101008

    YI X L, YANG B X, ZONG X F, et al. Signal chemical salicylic acid mitigates the negative effects of drought on photosynthesis and membrance lipid peroxidation of purple majesty[J]. Acta Ecologica Sinica, 2011, 31(1):67-74. http://d.wanfangdata.com.cn/periodical/stxb201101008

    [33]

    BANDURSKA H, CIESLAK M. The interactive effect of water deficit and UV-B radiation on salicylic acid accumulation in barley roots and leaves[J]. Environmental and Experimental Botany, 2013, 94:9-18. http://www.sciencedirect.com/science/article/pii/S0098847212000652

  • 期刊类型引用(2)

    1. 李宪,达举霞,章欢. 四阶两点边值问题n个对称正解的存在性. 华南师范大学学报(自然科学版). 2024(01): 123-127 . 百度学术
    2. 达举霞. 四阶两点边值问题3个对称正解的存在性. 华南师范大学学报(自然科学版). 2021(01): 90-93 . 百度学术

    其他类型引用(0)

图(6)  /  表(1)
计量
  • 文章访问数:  478
  • HTML全文浏览量:  343
  • PDF下载量:  61
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-01-12
  • 网络出版日期:  2021-01-04
  • 刊出日期:  2020-12-24

目录

/

返回文章
返回