A Pyrene-containing Fluorescent Probe with Enriching Fe3+
-
摘要: 以芘为荧光发射基团、以邻氨基苯甲酸基团为识别基团,设计、合成了一种对Fe3+特异性响应的荧光探针芘甲酰邻氨基苯甲酸(PAA).利用氢核磁共振波谱、质谱表征其结构,通过紫外-可见吸收光谱以及荧光发射光谱研究其对Fe3+的响应性能.结果表明:PAA对Fe3+具有高选择性、高抗干扰性的荧光响应.随着Fe3+浓度的升高,探针的荧光强度逐渐减弱,同时伴随大量Fe3+螯合物沉淀的析出,从而使Fe3+从体系中富集出来,且在4倍浓度干扰离子存在的体系中,PAA对Fe3+的识别能力几乎不受影响.因此,PAA在实际环境应用中,具有较大的潜力和应用价值.Abstract: A fluorescent probe (pyrene-formyl-anthranilic acid, PAA) with specific response to Fe3+ was designed and synthesized using pyrene as a fluorescent group and anthranilic acid group as a receptor. The structure was characterized with hydrogen nuclear magnetic resonance spectroscopy and mass spectrometry. Visible absorption spectra and fluorescence emission spectra were used to study the response of Fe3+. The results showed that PAA had high selectivity and high anti-interference fluorescence response to Fe3+. With the increase of Fe3+ concentration, the probe's fluorescence intensity was gradually weakened, and a large amount of iron ion chelate precipitated and so that it could be removed from the system. In the system where 4 times of interfering ions existed, the ability of PAA to recognize Fe3+ was hardly affected. Therefore PAA has a great potential for practical application.
-
Keywords:
- fluorescent probe /
- pyrene /
- Fe3+ /
- environmental application /
- enrichment
-
-
图 4 不同金属离子浓度对PAA荧光发射峰强度的影响及其干扰性
注:图A中c(PAA)=20.0 μmol/L, 发射峰中心波长为495 nm.图B为在PAA(20.0 μmol/L)水溶液中,单独添加Fe3+浓度(30.0 μmol/L)及同时添加Fe3+(30.0 μmol/L)和竞争离子(150.0 μmol/L)时溶液荧光发射强度的相对变化.
Figure 4. The effects of different metal ion concentrations on the intensity of PAA fluorescence emission peaks and their interference
-
[1] EL-AFIFI E M, BORAI E H, EL-DIN A M S. New approaches for efficient removal of some radionuclides and iron from rare earth liquor of monazite processing[J]. International Journal of Environmental Science and Techno-logy, 2018, 9(1):3125-3131. doi: 10.1007/s13762-018-02183-5
[2] MATAMOROSVELOZA A, CESPEDES O, JOHNSON B R G, et al. A highly reactive precursor in the iron sulfide system[J]. Nature Communications, 2018, 9(1):3125-3131. http://www.nature.com/articles/s41467-018-05493-x
[3] NIE M, WANG Y, GUO C, et al. CARM1-mediated methylation of protein arginine methyltransferase 5 represses human γ-globin gene expression in erythroleukemia cells[J]. Journal of Biological Chemistry, 2018, 9:689-699. http://www.jbc.org/content/293/45/17454.full.pdf+html?with-ds=yes
[4] HARTMAN E S, BRINDLEY E C, JULIEN P, et al. Increased reactive oxygen species and cell cycle defects contribute to anemia in the RASA3 mutant mouse model scat[J]. Frontiers in Physiology, 2018, 9:689-699. http://europepmc.org/abstract/MED/29922180
[5] ALEXANDER C, ABAKUMOV A M, FORSLUND R, et al. Role of the carbon support on the oxygen reduction and evolution activities in LaNiO3 composite electrodes in alkaline solution[J]. ACS Applied Energy Materials:Acsaem, 2018, 1(4):1549-1558. doi: 10.1021/acsaem.7b00339
[6] WEI T B, ZHANG P, SHI B B, et al. A highly selective chemosensor for colorimetric detection of Fe3+ and fluorescence turn-on response of Zn2+[J]. Dyes & Pigments, 2013, 97:297-302. http://www.sciencedirect.com/science/article/pii/S0143720812003658
[7] LEE M H, LEE H, CHANG M J, et al. A fluorescent probe for the Fe3+ ion pool in endoplasmic reticulum in liver cells[J]. Dyes & Pigments, 2016, 130:245-250. http://smartsearch.nstl.gov.cn/paper_detail.html?id=5541a98b703b8146587ef1cb0a554a1f
[8] WANG M, WANG J, XUE W, et al. A benzimidazole-based ratiometric fluorescent sensor for Cr3+ and Fe3+ in aqueous solution[J]. Dyes & Pigments, 2013, 97:475-480. http://www.sciencedirect.com/science/article/pii/S0143720813000545
[9] LONG L, ZHOU L, WANG L, et al. A ratiometric fluorescent probe for iron(Ⅲ) and its application for detection of iron(Ⅲ) in human blood serum[J]. Analytica Chimica Acta, 2014, 812(19):145-151. http://www.sciencedirect.com/science/article/pii/S0003267013015730
[10] IDRIS N, LAHNA K, RAMLI M. Study on emission spectral lines of iron, Fe in laser-induced breakdown spectroscopy(LIBS) on soil samples[J]. Journal of Physics Conference, 2017, 846(1):12-20.
[11] QIU L, ZHU C, CHEN H, et al. A turn-on fluorescent Fe3+ sensor derived from an anthracene-bearing bisdiene macrocycle and its intracellular imaging application[J]. Chemical Communications, 2014, 50(35):4631-4634. http://europepmc.org/abstract/med/24668051
[12] WEI Y, AYDIN Z, ZHANG Y, et al. A turn-on fluorescent sensor for imaging labile Fe3+ in live neuronal cells at subcellular resolution[J]. ChemBioChem, 2012, 13(11):1569-1573. doi: 10.1002/cbic.201200202
[13] DEVARAJ S, TSUI Y K, CHIANG C Y, et al. A new dual functional sensor: highly selective colorimetric chemosensor for Fe3+ and fluorescent sensor for Mg2+[J]. Spectrochimica Acta A:Molecular & Biomolecular Spectroscopy, 2012, 96(10):594-599. http://europepmc.org/abstract/MED/22868330
[14] 陈嘉韵, 潘珺仪, 陈志, 等.一种喹啉类Zn2+荧光比率型探针[J].华南师范大学学报(自然科学版), 2017, 49(2):56-60. doi: 10.6054/j.jscnun.2017099 CHEN J Y, PAN Y Y, CHEN Z, et al. A quinoline Zn2+ fluorescence ratio probe[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(2):56-60. doi: 10.6054/j.jscnun.2017099
[15] YANG L, YANG W, XU D, et al. A highly selective and sensitive Fe3+ fluorescent sensor by assembling three 1, 8-naphthalimide fluorophores with a tris(aminoethylamine) ligand[J]. Dyes & Pigments, 2013, 97:168-174. http://www.sciencedirect.com/science/article/pii/S0143720812003506
[16] ZHAO K, LIU T, WANG G, et al. A butterfly-shaped pyrene derivative of cholesterol and its uses as a fluorescent probe[J]. Journal of Physical Chemistry B, 2013, 117(18):5659-5667. http://europepmc.org/abstract/med/23581750
[17] BENESI H A, HILDEBRAND J H. A Spectrophotometric Investigation of the Interaction of Iodine with Aromatic Hydrocarbons[J]. Journal of the American Chemical Society, 1948, 71(8):2703-2707. http://onlinelibrary.wiley.com/resolve/reference/XREF?id=10.1021/ja01176a030
-
期刊类型引用(1)
1. 苏仙桃,杨浩,张曼. ClO~-识别的稀土荧光探针的合成及性能研究. 赤峰学院学报(自然科学版). 2021(12): 10-14 . 百度学术
其他类型引用(1)