Equivalent Parameter Conditions for the Construction of Hilbert-type Integral Inequalities with a Class of Non-homogeneous Kernels
-
摘要: 利用权函数方法,讨论了非齐次核K(x, y)=φλ(xλ1yλ2)φ′(xλ1yλ2)的Hilbert型积分不等式成立的等价参数条件及最佳常数因子,得到了构建此类Hilbert型不等式的充分必要条件及最佳常数因子的表达公式;对一些具体的非齐次核,得到了若干具有最佳常数因子的新的Hilbert型不等式; 最后,讨论了相应奇异积分算子的有界性及其范数.
-
关键词:
- 非齐次核 /
- Hilbert型积分不等式 /
- 等价参数条件 /
- 有界算子 /
- 算子范数
Abstract: Using the weight function methods, the equivalent parameter conditions for the validity of Hilbert-type integral inequalities with non-homogeneous kernel K(x, y)=φλ(xλ1yλ2)φ′(xλ1yλ2) and the best constant factor are discussed. The necessary and sufficient conditions for constructing such Hilbert-type inequalities and the formula for expressing the best constant factor are obtained. Many new Hilbert-type integral inequalities with some specific non-homogeneous kernels and the best constant factors are also obtained. Finally, the norm and boundedness of corresponding singular integral operators are discussed. -
设r>0,α∈R,定义函数空间:
Lαr(0,+∞)={f(x)≥0:‖f‖r,α=(∫+∞0xαfr(x)dx)1/r<+∞}. 若1p+1q=1(p>1),K(x, y)≥0,f(x)∈Lpα(0, +∞),g(y)∈Lqβ(0, +∞),称
∫+∞0∫+∞0K(x,y)f(x)g(y)dxdy≤M‖f‖p,α‖g‖q,β (1) 为以K(x, y)为核的Hilbert型积分不等式.
对于齐次核的情况,选取适当的搭配参数,已获得了许多具有最佳常数因子的Hilbert型不等式[1-10],研究结果表明:对于不同类型的核,最佳的搭配参数有不同的规律,找出其规律具有重要意义.但在已有研究中,搭配参数的选取大多数是凭研究者的经验得到的[11-15].
设λ>0,λ1>0,λ2>0,在K(x, y)=φλ(xλ1yλ2)×φ′(xλ1yλ2)的非齐次核情况下,本文讨论不等式(1)成立的等价参数条件,并讨论式(1)成立时的最佳常数因子.
1. 主要结论及证明
首先给出本文主要定理证明时需用的关于权函数的引理:
引理1 设1p+1q=1(p>1),λ1>0,λ2>0,φ(t)非负可导,φ′(t)保持定号,φλ+1(+∞)及φλ+1(0)存在,则
W1=∫+∞0φλ(tλ2)|φ′(tλ2)|tλ2−1dt=1λ2(λ+1)|φλ+1(+∞)−φλ+1(0)|, W2=∫+∞0φλ(tλ1)|φ′(tλ1)|tλ1−1dt=1λ1(λ+1)|φλ+1(+∞)−φλ+1(0)|, ω1(x)=∫+∞0φλ(xλ1yλ2)|φ′(xλ1yλ2)|yλ2−1dy=x−λ1W1, ω2(y)=∫+∞0φλ(xλ1yλ2)|φ′(xλ1yλ2)|xλ1−1dx=y−λ2W2. 证明 先证φ′(t)≥0的情形,此时φ(t)在(0, +∞)上递增.作变换tλ2=u,有
W1=1λ2∫+∞0φλ(u)φ′(u)u(λ2−1)/λ2+1/λ2−1dt=1λ2∫+∞0φλ(u)φ′(u)du=1λ2∫+∞0φλ(u)dφ(u)=1λ2(λ+1)|φλ+1(+∞)−φλ+1(0)|. 同理可证W2的情形.作变换xλ1yλ2=tλ2,有
ω1(x)=x−λ1/λ2∫+∞0φλ(tλ2)|φ′(tλ2)|(x−λ1/λ2t)λ2−1dt=x−λ1(λ2−1)/λ2−λ1/λ2∫+∞0φλ(tλ2)φ′(tλ2)tλ2−1dt=x−λ1W1. 同理可证ω2(y)的情形.
类似地可证明φ′(t)≤0的情形.证毕.
下面给出本文的主要结论.
定理1 设1p+1q=1(p>1),λ1>>0,λ2>>0,φ(t)非负可导,φ′(t)保持定号,φλ+1(+∞)及φλ+1(0)存在, 则
(ⅰ)当且仅当λ1+αλ2p=λ2+βλ1q时,存在常数M>0,使得
∫+∞0∫+∞0φλ(xλyλ)|φ′(xλyλ)|f(x)g(y)dxdy≤M‖f‖p,α‖g‖q,β, (2) 其中, f(x)∈Lpα(0, +∞),g(y)∈Lqβ(0, +∞).
(ⅱ)当λ1+αλ2p=λ2+βλ1q时,式(2)的最佳常数因子为:
infM=1(λ+1)λ1/q1λ1/p2|φλ+1(+∞)−φλ+1(0)|. 证明 记K(x, y)=φλ(xλ1yλ2)φ′(xλ1yλ2),λ1+αλ2p=λ2+βλ1q=c.
(ⅰ)设式(2)成立.若c < 0,取ε=-c/(2λ1λ2)>0,令
f(x)={x(−α−1−λ1ε)/p(x≥1),0(0<x<1), g(y)={y(−β−1+λ2ε)/q(0<y≤1),0(y>1), 可得
M‖f‖p,α‖g‖q,β=M(∫+∞1x−1−λ1εdx)1/p(∫10y−1+λ2εdy)1/q=Mε⋅1λ1/p1λ1/q2=−2Mcλ1/q1λ1/p2, ∫+∞0∫+∞0φλ(xλ1yλ2)|φ′(xλ1yλ2)|f(x)g(y)dxdy= ∫10y−(β+1−λ2ε)/q(∫+∞1K(x,y)x−(α+1+λ1ε)/pdx)dy=∫10y−(β+1−λ2ε)/q(∫+∞1K(yλ2/λ1x,1)x−(α+1+λ1ε)/pdx)dy=∫10y−β+1−λ2εq+λ2λ1⋅α+1+λ1εp−λ2λ1(∫+∞yλ2′λ1K(t,1)t−(α+1+λ1ε)/pdt)dy≥∫10y−1+c/λ1+λ2ε(∫+∞1K(t,1)t−(α+1+λ1ε)/pdt)dy=∫10y−1+c/(2λ1)dy∫+∞1K(t,1)t−(α+1+λ1ε)/pdt, 则有
∫10y−1+c/(2λ1)dy∫+∞1K(t,1)t−(α+1+λ1ε)/pdt≤−2Mcλ1/q1λ1/p2<+∞. (3) 由于c2λ1<0,则∫10y−1+c/(2λ1)dy=+∞,故式(3)是一个矛盾.从而知c≥0.
若c>0,取ε=c/(2λ1λ2)>0,令
f(x)={x(−α−1+λ1ε)/p(0<x≤1),0(x>1), g(y)={y(−β−1−λ2ε)/q(y≥1),0(0<y<1), 可得
M‖f‖p,α‖g‖q,β=2Mcλ1/q1λ1/p2, ∫+∞0∫+∞0φλ(xλ1yλ2)|φ′(xλ1yλ2)|f(x)g(y)dxdy= ∫+∞1y−(β+1+λ2ε)/q(∫10K(x,y)x−(α+1−λ1ε)/pdx)dy=∫+∞1y−(β+1+λ2ε)/q(∫10K(yλ2/λ1x,1)x−(α+1−λ1ε)/pdx)dy=∫+∞1y−β+1+λ2εq+λλ1⋅α+1−λ1εp−λ2λ1(∫yλ2λ10K(t,1)t−α+1−λ1εpdt)dy≥∫+∞1y−1+c/λ1−λ2ε(∫10K(t,1)t−(α+1−λ1ε)/pdt)dy=∫+∞1y−1+c/(2λ1)dy∫10K(t,1)t−(α+1−λ1ε)/pdt, 则有
∫+∞1y−1+c/(2λ1)dy∫10K(t,1)t−(α+1−λ1ε)/pdt≤2Mcλ1/q1λ1/p2<+∞. (4) 由于c2λ1>0,则∫+∞1y−1+c/(2λ1)dy=+∞,故式(4)是一个矛盾.所以c≤0.
综上可知c=0,即λ1+αλ2p=λ2+βλ1q..
反之,设λ1+αλ2p=λ2+βλ1q,则α+1q+λ1λ2(β+1q−1)=α,β+1p+λ2λ1(α+1p−1)=β.于是, 由Hölder不等式及引理1,有
∫+∞0∫+∞0φλ(xλ1yλ2)|φ′(xλ1yλ2)|f(x)g(y)dxdy=∫+∞0∫+∞0(x(α+1)/(pq)y(β+1)/(pq)f(x))(y(β+1)/(pq)x(α+1)/(pq)g(y))K(x,y)dxdy≤(∫+∞0∫+∞0x(α+1)/qy(β+1)/qfp(x)K(x,y)dxdy)1/p×(∫+∞0∫+∞0y(β+1)/px(α+1)/pgq(y)K(x,y)dxdy)1/q=(∫+∞0x(α+1)/qfp(x)ω1(x)dx)1/p×(∫+∞0y(β+1)/pgq(y)ω2(y)dy)1/q=W1/p1W1/q1(∫+∞0xα+1q+λλ2(β+1q−1)fp(x)dx)1/p×(∫+∞0yβ+1p+λλ1(α+1p−1)gq(y)dy)1/q=W1/p1W1/q1(∫+∞0xαfp(x)dx)1/p(∫+∞0yβgq(y)dy)1/q=1(λ+1)λ1/q1λ1/p2|φλ+1(+∞)−φλ+1(0)|‖f‖p,α‖g‖q,β. 任取M≥1(λ+1)λ1/q1λ1/p2|φλ+1(+∞)−φλ+1(0)|,式(2)都成立.
(ⅱ)当λ1+αλ2p=λ2+βλ1q时,设式(2)的最佳常数因子为M0,则由(i)的证明可知:
M0≤1(λ+1)λ1/q1λ1/p2|φλ+1(+∞)−φλ+1(0)|,∫+∞0∫+∞0φλ(xλ1yλ2)|φ′(xλ1yλ2)|f(x)g(y)dxdy≤M0‖f‖p,α‖g‖q,β. 取充分小的ε>0及足够大的自然数n,令
f(x)={x(−α−1−λ1ε)/p(x≥1),0(0<x<1), g(y)={y(−β−1+λ2ε)/q(0<y≤n),0(y>n), 可得
M0‖f‖p,α‖g‖q,β=M0ελ1/p1λ1/q2nλ2ε/q, ∫+∞0∫+∞0φλ(xλ1yλ2)|φ′(xλ1yλ2)|f(x)g(y)dxdy=∫+∞1x−(α+1+λ1ε)/p(∫n1K(x,y)y−(β+1−λ2ε)/qdy)dx=∫+∞1x−(α+1+λ1ε)/p(∫n0K(1,xλ1/λ2y)y−(β+1−λ2ε)/qdy)dx=∫+∞1x−α+1+λ1εp+λ1λ2⋅β+1−λ2εq−λ1λ2(∫nxλ1/λ20K(1,u)u−(β+1−λ2ε)/qdu)dx≥∫+∞1x−1−λ1εdx∫n0K(1,u)u−(β+1−λ2ε)/qdu=1λ1ε∫n0φλ(uλ2)|φ′(uλ2)|u−(β+1−λ2ε)/qdu, 则有
1λ1∫n0φλ(uλ2)|φ′(uλ2)|u−(β+1−λ2ε)/qdu≤M0λ1/p1λ1/q2n(λ2ε)/q. 先令ε→0+,再令n→+∞,得
1λ1∫+∞0φλ(uλ2)|φ′(uλ2)|u−(β+1)/qdu≤M0λ1/p1λ1/q2. 再由引理1可得
1(λ+1)λ1/q1λ1/p2|φλ+1(+∞)−φλ+1(0)|≤M0. 于是可知式(2)的最佳常数因子为:
M0=1(λ+1)λ1/q1λ1/p2|φλ+1(+∞)−φλ+1(0)|. 证毕.
在定理1中,取φ(t)=arccot(t),则φ′(t)=−11+t2<0.根据λ>0,有
φλ+1(+∞)−φλ+1(0)|=|0−(π2)λ+1|=(π2)λ+1. 于是可得:
推论1 设1p+1q=1(p>1),λ>0,λ1>>0,λ2>>0,则
(ⅰ)当且仅当λ1+αλ2p=λ2+βλ1q时,存在常数M>0,使
∫+∞0∫+∞0arccotλ(xλ1yλ2)1+(xλ1yλ2)2f(x)g(y)dxdy≤M‖f‖p,α‖g‖q,β, (5) 其中,f(x)∈Lpα(0, +∞),g(y)∈Lqβ(0, +∞).
(ⅱ)当式(5)成立时,其最佳常数因子为:
infM=1(λ+1)λ1/q1λ1/p2(π2)λ+1. 设双曲余切函数t=ex+e−xex−e−x(x>0,t>1)的反双曲余切函数为x=arcoth(t) (t>1, x>0),则dxdt=11−t2 < 0 (t>1),arcoth(a)=12lna+1a−1(a>1),arcoth(+∞)=0.于是,在定理1中取φ(t)=arcoth(t+a),可得
推论2 设1p+1q=1(p>1),λ1>0,λ2>0,a>1,则
(ⅰ)当且仅当λ1+αλ2p=λ2+βλ1q时,存在常数M>0,使得
∫+∞0∫+∞0arcothλ(xλ1yλ2+a)(xλ1yλ2+a)2−1f(x)g(y)dxdy≤M‖f‖p,α‖g‖q,β, (6) 其中,f(x)∈Lpα(0, +∞),g(y)∈Lqβ(0, +∞).
(ⅱ)当式(6)成立时,其最佳常数因子为:
infM=1(λ+1)λ1/q1λ1/p2(12lna+1a−1)λ+1. 2. 在算子理论中的应用
设K(x, y)≥0, 定义奇异积分算子:
T1(f)(y)=∫+∞0K(x,y)f(x)dx(y>0), T2(g)(x)=∫+∞0K(x,y)g(y)dy(x>0), 则根据Hilbert型不等式的基本理论,式(2)等价于:
‖T1(f)‖p,β(1−p)≤M‖f‖p,α,‖T2(g)‖q,α(1−q)≤M‖g‖q,β. 则由推论1和推论2,可得
命题1 设1p+1q=1(p>1),λ>0,λ1>0,λ2>0.定义奇异积分算子:
T1(f)(y)=∫+∞0arccotλ(xλ1yλ2)1+(xλ1yλ2)2f(x)dx(f(x)∈Lαp(0,+∞)), T2(g)(x)=∫+∞0arccotλ(xλ1yλ2)1+(xλ1yλ2)2g(y)dy(g(y)∈Lβq(0,+∞)), 则
(ⅰ)当且仅当(λ1+αλ2)/p=(λ2+βλ1)/q时,T1是Lpα(0, +∞)到Lpβ(1-p)(0, +∞)的有界线性算子,T2是Lqβ(0, +∞)到Lqα(1-q)(0, +∞)的有界线性算子.
(ⅱ)当(λ1+αλ2)/p=(λ2+βλ1)/q时,T1与T2的范数为:
‖T1‖=‖T2‖=1(λ+1)λ1/q1λ1/p2(π2)λ+1. 命题2 设1p+1q=1(p>1),λ>0,λ1>0,λ2>0,a>1, 定义奇异积分算子:
T1(f)(y)=∫+∞0arcothλ(xλ1yλ2+a)(xλ1yλ2+a)2−1f(x)dx(f(x)∈Lαp(0,+∞)), T2(g)(x)=∫+∞0arcothλ(xλ1yλ2+a)(xλ1yλ2)2−1g(y)dy(g(y)∈Lβq(0,+∞)), 则
(ⅰ)当且仅当(λ1+αλ2)/p=(λ2+βλ1)/q时,T1是Lpα(0, +∞)到Lpβ(1-p)(0, +∞)的有界线性算子,T2是Lqβ(0, +∞)到Lqα(1-q)(0, +∞)的有界线性算子.
(ⅱ)当(λ1+αλ2)/p=(λ2+βλ1)/q时,T1与T2的算子范数为:
‖T1‖=‖T2‖=1(λ+1)λ1/q1λ1/p2(12lna+1a−1)λ+1. -
[1] RASSIAS M T, YANG B C. Equivalent propertions of a Hilbert-type integral inequality with the best constant factor related to the hurwitz zeta function[J]. Annals of Functional Analysis, 2018, 9(2):282-295. http://www.researchgate.net/publication/321147479_Equivalent_properties_of_a_Hilbert-type_integral_inequality_with_the_best_constant_factor_related_to_the_Hurwitz_zeta_function
[2] HONG Y. On Hardy-Hilbert integral inequalities with some parameters[J]. Journal of Inequalities in Pure and Applied Mathematics, 2005, 6(4):92/1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001682473
[3] 洪勇.具有齐次核的Hilbert型积分不等式的构造特征及其应用[J].吉林大学学报(理学版), 2017, 55(2):189-194. http://www.cqvip.com/QK/95191A/20172/671625594.html HONG Y. Structural characteristics and applications of Hilbert-type integral inequalities with homogeneous kernel[J]. Journal of Jilin University(Science Edition), 2017, 55(2):189-194. http://www.cqvip.com/QK/95191A/20172/671625594.html
[4] 钟建华.一个核为零齐次的Hilbert级数型不等式及其逆[J].华南师范大学学报(自然科学版), 2011, 43(2):33-37. http://journal-n.scnu.edu.cn/article/id/502 ZHONG J H. A Hilbert-type series inequality and its reverses with the homogeneous kernels of zero degree[J]. Journal of South China Normal University(Natural Science Edition), 2011, 43(2):33-37. http://journal-n.scnu.edu.cn/article/id/502
[5] 曾志红, 杨必成.关于一个参量化的全平面Hilbert不等式[J].华南师范大学学报(自然科学版), 2017, 49(5):100-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201705018 ZENG Z H, YANG B C. A parametric Hilbert's integral inequality in the whore plane[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(5):100-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201705018
[6] 洪勇.涉及多个函数的Hilbert型积分不等式[J].数学学报(中文版), 2006, 49(1):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxxb201405001 HONG Y. On Hardy-type integral inequalities with some functions[J]. Acta Mathematical Sinica(Chinese Series), 2006, 49(1):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxxb201405001
[7] 洪勇.一类带齐次核的奇异重积分算子的范数及其应用[J].数学年刊(中文版), 2011, 32(5):599-606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxnk201105008 HONG Y. On the singular multiple integral operator with homogeneous kernel and application[J]. Chinese Annals of Mathematics, 2011, 32(5):599-606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxnk201105008
[8] YANG B C, CHEN Q. Two kinds of Hilbert-type integral inequalities in the whole plane[J]. Journal of Inequalities and Applications, 2015(1):1-11. doi: 10.1186/s13660-014-0545-8
[9] LIU T, YANG B C, HE L P. On a multidimensional Hilbert-type integral inequality with logarithm function[J]. Mathematical Inequalities and Application, 2015, 18(4):1219-1234. http://www.researchgate.net/publication/284896618_On_a_multidimensional_Hilbert-type_integral_inequality_with_logarithm_function
[10] RASSIAS M T, YANG B C. A Hilbert-type integral inequality in the whole plane reated to the hyper geometric function and the beta function[J]. Journal of Mathematical Analysis and Applications, 2015, 428:1286-1308. doi: 10.1016/j.jmaa.2015.04.003
[11] XU L Z, GAO Y K. Note on Hardy-Riesz's extension of Hilbert's inequality[J]. Chinese Quarterly Journal Mathe-matics, 1991, 6(1):75-77. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXJK199101010.htm
[12] XIE Z T, ZENG Z. A new Hilbert-type inequality in whole plane with the homogeneous kernel of degree 0[J]. i-manager's Journal on Mathematics, 2013, 3(1):13-19.
[13] KUANG J C. On new extensions of Hilbert's integral inequality[J]. Journal of Mathematical Analysis and Applications, 1999, 235:608-614. doi: 10.1006/jmaa.1999.6373
[14] MA Q W, YANG B C, HE L P. A half-discrete Hilbert-type inequality in the whole plane with multiparameters[J]. Journal of Function Spaces, 2016: 6059065/1-9.
[15] LIAO J Q, YANG B C. On a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of exponential function[J]. Journal of Inequalities and Applications, 2016(1):1-21. http://europepmc.org/articles/PMC4980859/
-
期刊类型引用(1)
1. 李萍. 积分不等式应用于播种机作业速度研究. 农机化研究. 2023(01): 37-40 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 612
- HTML全文浏览量: 246
- PDF下载量: 59
- 被引次数: 1