Processing math: 100%

构建一类非齐次核的Hilbert型积分不等式的等价参数条件

洪勇, 陈强

洪勇, 陈强. 构建一类非齐次核的Hilbert型积分不等式的等价参数条件[J]. 华南师范大学学报(自然科学版), 2020, 52(5): 124-128. DOI: 10.6054/j.jscnun.2020085
引用本文: 洪勇, 陈强. 构建一类非齐次核的Hilbert型积分不等式的等价参数条件[J]. 华南师范大学学报(自然科学版), 2020, 52(5): 124-128. DOI: 10.6054/j.jscnun.2020085
HONG Yong, CHEN Qiang. Equivalent Parameter Conditions for the Construction of Hilbert-type Integral Inequalities with a Class of Non-homogeneous Kernels[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 124-128. DOI: 10.6054/j.jscnun.2020085
Citation: HONG Yong, CHEN Qiang. Equivalent Parameter Conditions for the Construction of Hilbert-type Integral Inequalities with a Class of Non-homogeneous Kernels[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(5): 124-128. DOI: 10.6054/j.jscnun.2020085

构建一类非齐次核的Hilbert型积分不等式的等价参数条件

基金项目: 

国家自然科学基金项目 61640222

详细信息
    通讯作者:

    洪勇,教授,Email:hongyonggdcc@yeah.net

  • 中图分类号: O178

Equivalent Parameter Conditions for the Construction of Hilbert-type Integral Inequalities with a Class of Non-homogeneous Kernels

  • 摘要: 利用权函数方法,讨论了非齐次核K(x, y)=φλ(xλ1yλ2)φ′(xλ1yλ2)的Hilbert型积分不等式成立的等价参数条件及最佳常数因子,得到了构建此类Hilbert型不等式的充分必要条件及最佳常数因子的表达公式;对一些具体的非齐次核,得到了若干具有最佳常数因子的新的Hilbert型不等式; 最后,讨论了相应奇异积分算子的有界性及其范数.
    Abstract: Using the weight function methods, the equivalent parameter conditions for the validity of Hilbert-type integral inequalities with non-homogeneous kernel K(x, y)=φλ(xλ1yλ2)φ′(xλ1yλ2) and the best constant factor are discussed. The necessary and sufficient conditions for constructing such Hilbert-type inequalities and the formula for expressing the best constant factor are obtained. Many new Hilbert-type integral inequalities with some specific non-homogeneous kernels and the best constant factors are also obtained. Finally, the norm and boundedness of corresponding singular integral operators are discussed.
  • r>0,αR,定义函数空间:

    Lαr(0,+)={f(x)0:fr,α=(+0xαfr(x)dx)1/r<+}.

    1p+1q=1(p>1)K(x, y)≥0,f(x)∈Lpα(0, +∞),g(y)∈Lqβ(0, +∞),称

    +0+0K(x,y)f(x)g(y)dxdyMfp,αgq,β (1)

    为以K(x, y)为核的Hilbert型积分不等式.

    对于齐次核的情况,选取适当的搭配参数,已获得了许多具有最佳常数因子的Hilbert型不等式[1-10],研究结果表明:对于不同类型的核,最佳的搭配参数有不同的规律,找出其规律具有重要意义.但在已有研究中,搭配参数的选取大多数是凭研究者的经验得到的[11-15].

    λ>0,λ1>0,λ2>0,在K(x, y)=φλ(xλ1yλ2φ′(xλ1yλ2)的非齐次核情况下,本文讨论不等式(1)成立的等价参数条件,并讨论式(1)成立时的最佳常数因子.

    首先给出本文主要定理证明时需用的关于权函数的引理:

    引理1   设1p+1q=1(p>1)λ1>0,λ2>0,φ(t)非负可导,φ′(t)保持定号,φλ+1(+∞)及φλ+1(0)存在,则

    W1=+0φλ(tλ2)|φ(tλ2)|tλ21dt=1λ2(λ+1)|φλ+1(+)φλ+1(0)|,
    W2=+0φλ(tλ1)|φ(tλ1)|tλ11dt=1λ1(λ+1)|φλ+1(+)φλ+1(0)|,
    ω1(x)=+0φλ(xλ1yλ2)|φ(xλ1yλ2)|yλ21dy=xλ1W1,
    ω2(y)=+0φλ(xλ1yλ2)|φ(xλ1yλ2)|xλ11dx=yλ2W2.

    证明   先证φ′(t)≥0的情形,此时φ(t)在(0, +∞)上递增.作变换tλ2=u,有

    W1=1λ2+0φλ(u)φ(u)u(λ21)/λ2+1/λ21dt=1λ2+0φλ(u)φ(u)du=1λ2+0φλ(u)dφ(u)=1λ2(λ+1)|φλ+1(+)φλ+1(0)|.

    同理可证W2的情形.作变换xλ1yλ2=tλ2,有

    ω1(x)=xλ1/λ2+0φλ(tλ2)|φ(tλ2)|(xλ1/λ2t)λ21dt=xλ1(λ21)/λ2λ1/λ2+0φλ(tλ2)φ(tλ2)tλ21dt=xλ1W1.

    同理可证ω2(y)的情形.

    类似地可证明φ′(t)≤0的情形.证毕.

    下面给出本文的主要结论.

    定理1  设1p+1q=1(p>1)λ1>>0,λ2>>0,φ(t)非负可导,φ′(t)保持定号,φλ+1(+∞)及φλ+1(0)存在, 则

    (ⅰ)当且仅当λ1+αλ2p=λ2+βλ1q时,存在常数M>0,使得

    +0+0φλ(xλyλ)|φ(xλyλ)|f(x)g(y)dxdyMfp,αgq,β, (2)

    其中, f(x)∈Lpα(0, +∞),g(y)∈Lqβ(0, +∞).

    (ⅱ)当λ1+αλ2p=λ2+βλ1q时,式(2)的最佳常数因子为:

    infM=1(λ+1)λ1/q1λ1/p2|φλ+1(+)φλ+1(0)|.

    证明  记K(x, y)=φλ(xλ1yλ2)φ′(xλ1yλ2),λ1+αλ2p=λ2+βλ1q=c.

    (ⅰ)设式(2)成立.若c < 0,取ε=-c/(2λ1λ2)>0,令

    f(x)={x(α1λ1ε)/p(x1),0(0<x<1),
    g(y)={y(β1+λ2ε)/q(0<y1),0(y>1),

    可得

    Mfp,αgq,β=M(+1x1λ1εdx)1/p(10y1+λ2εdy)1/q=Mε1λ1/p1λ1/q2=2Mcλ1/q1λ1/p2,
    +0+0φλ(xλ1yλ2)|φ(xλ1yλ2)|f(x)g(y)dxdy=    10y(β+1λ2ε)/q(+1K(x,y)x(α+1+λ1ε)/pdx)dy=10y(β+1λ2ε)/q(+1K(yλ2/λ1x,1)x(α+1+λ1ε)/pdx)dy=10yβ+1λ2εq+λ2λ1α+1+λ1εpλ2λ1(+yλ2λ1K(t,1)t(α+1+λ1ε)/pdt)dy10y1+c/λ1+λ2ε(+1K(t,1)t(α+1+λ1ε)/pdt)dy=10y1+c/(2λ1)dy+1K(t,1)t(α+1+λ1ε)/pdt,

    则有

    10y1+c/(2λ1)dy+1K(t,1)t(α+1+λ1ε)/pdt2Mcλ1/q1λ1/p2<+. (3)

    由于c2λ1<0,则10y1+c/(2λ1)dy=+,故式(3)是一个矛盾.从而知c≥0.

    c>0,取ε=c/(2λ1λ2)>0,令

    f(x)={x(α1+λ1ε)/p(0<x1),0(x>1),
    g(y)={y(β1λ2ε)/q(y1),0(0<y<1),

    可得

    Mfp,αgq,β=2Mcλ1/q1λ1/p2,
    +0+0φλ(xλ1yλ2)|φ(xλ1yλ2)|f(x)g(y)dxdy=    +1y(β+1+λ2ε)/q(10K(x,y)x(α+1λ1ε)/pdx)dy=+1y(β+1+λ2ε)/q(10K(yλ2/λ1x,1)x(α+1λ1ε)/pdx)dy=+1yβ+1+λ2εq+λλ1α+1λ1εpλ2λ1(yλ2λ10K(t,1)tα+1λ1εpdt)dy+1y1+c/λ1λ2ε(10K(t,1)t(α+1λ1ε)/pdt)dy=+1y1+c/(2λ1)dy10K(t,1)t(α+1λ1ε)/pdt,

    则有

    +1y1+c/(2λ1)dy10K(t,1)t(α+1λ1ε)/pdt2Mcλ1/q1λ1/p2<+. (4)

    由于c2λ1>0,则+1y1+c/(2λ1)dy=+,故式(4)是一个矛盾.所以c≤0.

    综上可知c=0,即λ1+αλ2p=λ2+βλ1q..

    反之,设λ1+αλ2p=λ2+βλ1q,则α+1q+λ1λ2(β+1q1)=α,β+1p+λ2λ1(α+1p1)=β.于是, 由Hölder不等式及引理1,有

    +0+0φλ(xλ1yλ2)|φ(xλ1yλ2)|f(x)g(y)dxdy=+0+0(x(α+1)/(pq)y(β+1)/(pq)f(x))(y(β+1)/(pq)x(α+1)/(pq)g(y))K(x,y)dxdy(+0+0x(α+1)/qy(β+1)/qfp(x)K(x,y)dxdy)1/p×(+0+0y(β+1)/px(α+1)/pgq(y)K(x,y)dxdy)1/q=(+0x(α+1)/qfp(x)ω1(x)dx)1/p×(+0y(β+1)/pgq(y)ω2(y)dy)1/q=W1/p1W1/q1(+0xα+1q+λλ2(β+1q1)fp(x)dx)1/p×(+0yβ+1p+λλ1(α+1p1)gq(y)dy)1/q=W1/p1W1/q1(+0xαfp(x)dx)1/p(+0yβgq(y)dy)1/q=1(λ+1)λ1/q1λ1/p2|φλ+1(+)φλ+1(0)|fp,αgq,β.

    任取M1(λ+1)λ1/q1λ1/p2|φλ+1(+)φλ+1(0)|,式(2)都成立.

    (ⅱ)当λ1+αλ2p=λ2+βλ1q时,设式(2)的最佳常数因子为M0,则由(i)的证明可知:

    M01(λ+1)λ1/q1λ1/p2|φλ+1(+)φλ+1(0)|,+0+0φλ(xλ1yλ2)|φ(xλ1yλ2)|f(x)g(y)dxdyM0fp,αgq,β.

    取充分小的ε>0及足够大的自然数n,令

    f(x)={x(α1λ1ε)/p(x1),0(0<x<1),
    g(y)={y(β1+λ2ε)/q(0<yn),0(y>n),

    可得

    M0fp,αgq,β=M0ελ1/p1λ1/q2nλ2ε/q,
    +0+0φλ(xλ1yλ2)|φ(xλ1yλ2)|f(x)g(y)dxdy=+1x(α+1+λ1ε)/p(n1K(x,y)y(β+1λ2ε)/qdy)dx=+1x(α+1+λ1ε)/p(n0K(1,xλ1/λ2y)y(β+1λ2ε)/qdy)dx=+1xα+1+λ1εp+λ1λ2β+1λ2εqλ1λ2(nxλ1/λ20K(1,u)u(β+1λ2ε)/qdu)dx+1x1λ1εdxn0K(1,u)u(β+1λ2ε)/qdu=1λ1εn0φλ(uλ2)|φ(uλ2)|u(β+1λ2ε)/qdu,

    则有

    1λ1n0φλ(uλ2)|φ(uλ2)|u(β+1λ2ε)/qduM0λ1/p1λ1/q2n(λ2ε)/q.

    先令ε→0+,再令n→+∞,得

    1λ1+0φλ(uλ2)|φ(uλ2)|u(β+1)/qduM0λ1/p1λ1/q2.

    再由引理1可得

    1(λ+1)λ1/q1λ1/p2|φλ+1(+)φλ+1(0)|M0.

    于是可知式(2)的最佳常数因子为:

    M0=1(λ+1)λ1/q1λ1/p2|φλ+1(+)φλ+1(0)|.

    证毕.

    在定理1中,取φ(t)=arccot(t),则φ(t)=11+t2<0.根据λ>0,有

    φλ+1(+)φλ+1(0)|=|0(π2)λ+1|=(π2)λ+1.

    于是可得:

    推论1  设1p+1q=1(p>1)λ>0,λ1>>0,λ2>>0,则

    (ⅰ)当且仅当λ1+αλ2p=λ2+βλ1q时,存在常数M>0,使

    +0+0arccotλ(xλ1yλ2)1+(xλ1yλ2)2f(x)g(y)dxdyMfp,αgq,β, (5)

    其中,f(x)∈Lpα(0, +∞),g(y)∈Lqβ(0, +∞).

    (ⅱ)当式(5)成立时,其最佳常数因子为:

    infM=1(λ+1)λ1/q1λ1/p2(π2)λ+1.

    设双曲余切函数t=ex+exexex(x>0,t>1)的反双曲余切函数为x=arcoth(t) (t>1, x>0),则dxdt=11t2 < 0 (t>1),arcoth(a)=12lna+1a1(a>1),arcoth(+∞)=0.于是,在定理1中取φ(t)=arcoth(t+a),可得

    推论2  设1p+1q=1(p>1)λ1>0,λ2>0,a>1,则

    (ⅰ)当且仅当λ1+αλ2p=λ2+βλ1q时,存在常数M>0,使得

    +0+0arcothλ(xλ1yλ2+a)(xλ1yλ2+a)21f(x)g(y)dxdyMfp,αgq,β, (6)

    其中,f(x)∈Lpα(0, +∞),g(y)∈Lqβ(0, +∞).

    (ⅱ)当式(6)成立时,其最佳常数因子为:

    infM=1(λ+1)λ1/q1λ1/p2(12lna+1a1)λ+1.

    K(x, y)≥0, 定义奇异积分算子:

    T1(f)(y)=+0K(x,y)f(x)dx(y>0),
    T2(g)(x)=+0K(x,y)g(y)dy(x>0),

    则根据Hilbert型不等式的基本理论,式(2)等价于:

    T1(f)p,β(1p)Mfp,α,T2(g)q,α(1q)Mgq,β.

    则由推论1和推论2,可得

    命题1  设1p+1q=1(p>1)λ>0,λ1>0,λ2>0.定义奇异积分算子:

    T1(f)(y)=+0arccotλ(xλ1yλ2)1+(xλ1yλ2)2f(x)dx(f(x)Lαp(0,+)),
    T2(g)(x)=+0arccotλ(xλ1yλ2)1+(xλ1yλ2)2g(y)dy(g(y)Lβq(0,+)),

    (ⅰ)当且仅当(λ1+αλ2)/p=(λ2+βλ1)/q时,T1Lpα(0, +∞)到Lpβ(1-p)(0, +∞)的有界线性算子,T2Lqβ(0, +∞)到Lqα(1-q)(0, +∞)的有界线性算子.

    (ⅱ)当(λ1+αλ2)/p=(λ2+βλ1)/q时,T1T2的范数为:

    T1=T2=1(λ+1)λ1/q1λ1/p2(π2)λ+1.

    命题2   设1p+1q=1(p>1)λ>0,λ1>0,λ2>0,a>1, 定义奇异积分算子:

    T1(f)(y)=+0arcothλ(xλ1yλ2+a)(xλ1yλ2+a)21f(x)dx(f(x)Lαp(0,+)),
    T2(g)(x)=+0arcothλ(xλ1yλ2+a)(xλ1yλ2)21g(y)dy(g(y)Lβq(0,+)),

    (ⅰ)当且仅当(λ1+αλ2)/p=(λ2+βλ1)/q时,T1Lpα(0, +∞)到Lpβ(1-p)(0, +∞)的有界线性算子,T2Lqβ(0, +∞)到Lqα(1-q)(0, +∞)的有界线性算子.

    (ⅱ)当(λ1+αλ2)/p=(λ2+βλ1)/q时,T1T2的算子范数为:

    T1=T2=1(λ+1)λ1/q1λ1/p2(12lna+1a1)λ+1.
  • [1]

    RASSIAS M T, YANG B C. Equivalent propertions of a Hilbert-type integral inequality with the best constant factor related to the hurwitz zeta function[J]. Annals of Functional Analysis, 2018, 9(2):282-295. http://www.researchgate.net/publication/321147479_Equivalent_properties_of_a_Hilbert-type_integral_inequality_with_the_best_constant_factor_related_to_the_Hurwitz_zeta_function

    [2]

    HONG Y. On Hardy-Hilbert integral inequalities with some parameters[J]. Journal of Inequalities in Pure and Applied Mathematics, 2005, 6(4):92/1-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001682473

    [3] 洪勇.具有齐次核的Hilbert型积分不等式的构造特征及其应用[J].吉林大学学报(理学版), 2017, 55(2):189-194. http://www.cqvip.com/QK/95191A/20172/671625594.html

    HONG Y. Structural characteristics and applications of Hilbert-type integral inequalities with homogeneous kernel[J]. Journal of Jilin University(Science Edition), 2017, 55(2):189-194. http://www.cqvip.com/QK/95191A/20172/671625594.html

    [4] 钟建华.一个核为零齐次的Hilbert级数型不等式及其逆[J].华南师范大学学报(自然科学版), 2011, 43(2):33-37. http://journal-n.scnu.edu.cn/article/id/502

    ZHONG J H. A Hilbert-type series inequality and its reverses with the homogeneous kernels of zero degree[J]. Journal of South China Normal University(Natural Science Edition), 2011, 43(2):33-37. http://journal-n.scnu.edu.cn/article/id/502

    [5] 曾志红, 杨必成.关于一个参量化的全平面Hilbert不等式[J].华南师范大学学报(自然科学版), 2017, 49(5):100-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201705018

    ZENG Z H, YANG B C. A parametric Hilbert's integral inequality in the whore plane[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(5):100-103. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnsfdx201705018

    [6] 洪勇.涉及多个函数的Hilbert型积分不等式[J].数学学报(中文版), 2006, 49(1):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxxb201405001

    HONG Y. On Hardy-type integral inequalities with some functions[J]. Acta Mathematical Sinica(Chinese Series), 2006, 49(1):39-44. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxxb201405001

    [7] 洪勇.一类带齐次核的奇异重积分算子的范数及其应用[J].数学年刊(中文版), 2011, 32(5):599-606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxnk201105008

    HONG Y. On the singular multiple integral operator with homogeneous kernel and application[J]. Chinese Annals of Mathematics, 2011, 32(5):599-606. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sxnk201105008

    [8]

    YANG B C, CHEN Q. Two kinds of Hilbert-type integral inequalities in the whole plane[J]. Journal of Inequalities and Applications, 2015(1):1-11. doi: 10.1186/s13660-014-0545-8

    [9]

    LIU T, YANG B C, HE L P. On a multidimensional Hilbert-type integral inequality with logarithm function[J]. Mathematical Inequalities and Application, 2015, 18(4):1219-1234. http://www.researchgate.net/publication/284896618_On_a_multidimensional_Hilbert-type_integral_inequality_with_logarithm_function

    [10]

    RASSIAS M T, YANG B C. A Hilbert-type integral inequality in the whole plane reated to the hyper geometric function and the beta function[J]. Journal of Mathematical Analysis and Applications, 2015, 428:1286-1308. doi: 10.1016/j.jmaa.2015.04.003

    [11]

    XU L Z, GAO Y K. Note on Hardy-Riesz's extension of Hilbert's inequality[J]. Chinese Quarterly Journal Mathe-matics, 1991, 6(1):75-77. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SXJK199101010.htm

    [12]

    XIE Z T, ZENG Z. A new Hilbert-type inequality in whole plane with the homogeneous kernel of degree 0[J]. i-manager's Journal on Mathematics, 2013, 3(1):13-19.

    [13]

    KUANG J C. On new extensions of Hilbert's integral inequality[J]. Journal of Mathematical Analysis and Applications, 1999, 235:608-614. doi: 10.1006/jmaa.1999.6373

    [14]

    MA Q W, YANG B C, HE L P. A half-discrete Hilbert-type inequality in the whole plane with multiparameters[J]. Journal of Function Spaces, 2016: 6059065/1-9.

    [15]

    LIAO J Q, YANG B C. On a more accurate half-discrete Hardy-Hilbert-type inequality related to the kernel of exponential function[J]. Journal of Inequalities and Applications, 2016(1):1-21. http://europepmc.org/articles/PMC4980859/

  • 期刊类型引用(1)

    1. 李萍. 积分不等式应用于播种机作业速度研究. 农机化研究. 2023(01): 37-40 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  612
  • HTML全文浏览量:  246
  • PDF下载量:  59
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-03-25
  • 网络出版日期:  2020-11-02
  • 刊出日期:  2020-10-24

目录

/

返回文章
返回