PCDD/Fs Emission and Toxic Equivalent Balance of Municipal Sewage Sludge Cocombustion in a Solid Waste Incinerator
-
摘要: 于2016年5月和2017年1月,分别对南方某生活垃圾焚烧发电厂开展生活垃圾与市政污泥(分别为0%、5%、10%和15%)协同焚烧试验,探讨市政污泥掺烧对生活垃圾焚烧过程中PCDD/Fs排放的影响.在不同季节中,PCDD/Fs均主要分布于飞灰与炉渣中.受焚烧过程中PCDD/Fs的结构破合与重组的影响,废渣中以2, 3, 4, 7, 8-PeCDF (13.0%~72.1%)单体为主. 2016年5月,每吨焚烧原料(指生活垃圾跟污泥的混合物)混合焚烧排放的PCDD/Fs毒性当量比原料本身含有的增加了14.1~29.2 μg TEQ/t,而2017年1月则降低了9.2~9.9 μg TEQ /t.生活垃圾焚烧过程中加入市政污泥能够提高焚烧材料中的硫元素与氯元素的质量比,从而抑制PCDD/Fs的再合成.综上所述,在保证生活垃圾焚烧发电厂的电力生产条件下,适当的市政污泥与生活垃圾协同焚烧能够降低焚烧过程中的PCDD/Fs排放,从而实现市政垃圾污泥的安全处理处置.Abstract: The influence of municipal sewage sludge (MSS) on the discharge of PCDD/Fs in the process of munici-pal solid waste (MSW) combustion is discussed. The co-incineration tests of MSW and MSS (0%, 5%, 10% and 15%, respectively) were carried out in a MSW incineration in southern China in May 2016 (wet season) and Jan 2017 (dry season). The PCDD/Fs were mainly distributed in flying ash in the wet season and in the slag in the dry season. The emission of PCDD/F per ton of raw material after incineration was 14.1~29.2 μg TEQ /t higher than that in the raw material in the wet season and was 9.2~9.9 μg TEQ /t lower in the dry season. The PCDD/Fs congener profiles were dominated by 2, 3, 4, 7, 8-PeCDF (13.0%~72.1%) in the output discard in both seasons, which can be attributed to the decomposition and recombination of PCDD/Fs. The added MSS during MSW co-incineration represses the production of PCDD/Fs due to the higher ratio of sulfur to chlorine in the incineration materials. Therefore, MSS can be an ideal candidate for MSW disposal under appropriate management.
-
近年来,随着无线技术和半导体技术的飞速发展,射频能量收集(Radio Frequency Energy Harvesting, RFEH)技术越来越受到工业界和学术界的广泛关注. RFEH技术是一种新型电力能量获取技术,通过天线收集散布在空气中离散的射频信号或来自特定射频信号源发射的射频信号,然后通过整流电路将射频信号转换为直流电压,从而为后续电路提供全部或部分能量. 这种从环境中获取射频能量的方式可以克服传统电池供电带来的使用寿命有限、维护成本高等不利因素,大大拓展了一些低功率电子设备使用的灵活性. 目前,RFEH技术可被广泛应用于无线传感网络(Wireless Sensor Networks,WSNs)[1-3]、物联网(Internet of Things,IoT)[4-6]、植入式生物医疗设备(Biomedical Implanted Devices,BIDs)[7-9]等.
整流天线是射频能量收集系统中的重要组成部分,其主要作用是接收(或采集)射频能量并将其转换为直流能量. 整流天线(Rectenna)主要由天线(Antenna)和整流电路(Rectifier)两部分构成[10]. 整流电路的性能对于整流天线和整个RFEH系统的性能都具有重要影响. 通常,整流电路的性能指标有:射频-直流功率转换效率(RF-to-DC Power Conversion Efficiency)、频带宽度、输入功率范围等. 考虑到环境中的射频信号分布在多个不同的频带,因此,对宽带整流电路进行研究具有重要意义. 然而,由于整流电路的非线性特征,使高效率宽带整流电路的设计具有挑战性[11].
目前,国内外一些学者已经对宽带整流电路开展了一定程度的研究. 例如双支路匹配网络的宽带整流电路[12],当输入功率为10 dBm时,该整流电路在1.8~2.5 GHz频率范围内,整流效率均大于40%. 此外,基于二阶分支线耦合器宽带整流电路的研究[13]表明:当输入功率为17.2 dBm时,该整流电路在2.08~2.58 GHz频率范围内,整流效率均大于70%. 上述设计方案[12-13]虽然在一定程度上拓展了整流电路的带宽,但这些设计不仅增加了电路尺寸和复杂度,也造成了更大的插损,不利于整流电路效率的提升. 在基于非均匀传输线设计的宽带整流电路[14]中,当输入功率为10 dBm时,该整流电路在470~860 MHz频带范围内转换效率均大于60%,但是其匹配网络大幅增加了电路尺寸. 在基于两级匹配网络的宽带整流电路[15]中,当输入功率为19.5 dBm时,该整流电路在1.80~2.72 GHz频率范围内转换效率大于70%. 在采用多个二极管和频率选择性网络设计的宽带整流电路[16]中,当输入功率为10 dBm时,该电路在1.75~3.55 GHz频带内,整流效率均大于70%.
宽带整流电路的设计方案普遍存在尺寸大、电路结构复杂等问题,大大限制了射频能量收集技术的应用. 为了适应射频能量收集系统小型化、集成化的发展趋势,本文主要针对小型化宽带整流电路进行研究. 首先,提出了一种新型宽带阻抗匹配网络,该阻抗匹配网络具有结构简单、尺寸小的特点;然后,基于所提出的宽带阻抗匹配网络,设计了一种新型宽带小型化整流电路;最后,通过软件仿真和实验测试,对整流电路的性能进行了分析与验证.
1. 整流电路的设计
整流电路包括阻抗匹配网络(TL1、TL2)、隔直电容(Cin)、肖特基二极管(HSMS 2862)、直通滤波器(Cout)和负载电阻(RL). 如图 1所示,Cin和Cout的电容值分别为56和15 pF. 为了在宽频带范围内提高转换效率,设计了一种结构简单的阻抗匹配网络,它仅由2段微带传输线TL1和TL2构成. 从AA′、BB′和CC′这3个参考面看,输入阻抗分别记为Zin1、Zin2和Zin. 阻抗匹配网络的设计主要分为2个步骤:首先,选取2个合适的频点f1和f2作为目标频点,并通过微带线TL1将这2点的阻抗变换为一对共轭阻抗;然后,通过并联短路枝节线消除这对共轭阻抗的虚部,最终实现宽带阻抗匹配作用.
1.1 微带线TL1的设计
首先,选定2个工作频点,记为f1和f2. f1=1.8 GHz,f2=2.8 GHz,此时,输入阻抗Zin1 在f1和f2处对应的阻抗可以表示为
Zin1(f1)=Z1×(Ra1+jXa1)+jZ1tanθa1Z1+j(Ra1+jXa1)tanθa1, (1) Zin1(f2)=Z1×(Ra2+jXa2)+jZ1tanθa2Z1+j(Ra2+jXa2)tanθa2, (2) 其中,Z1表示微带线TL1的特征阻抗,θa1和θa2分别表示TL1在频率f1和f2处对应的电长度. k=f2/f1(假设f2>f1). 由微波理论可知,电长度θa1和θa2的关系为θa2=kθa1,将其代入式(2)可得
Zin1(f1)=Z1×Ra1+j(Xa1+Z1tanθa1)Z1−Xa1tanθa1+jRa1tanθa1, (3) Zin1(f2)=Z1×Ra2+j(Xa2+Z1tan(kθa1))Z1−Xa2tan(kθa1)+jRa2tan(kθa1). (4) 联立式(3)和式(4)可得:
Z1=√Ra1Ra2+Xa1Xa2+Xa1+Xa2Ra2−Ra1(Ra1Xa2−Ra2Xa1), (5) θa1=1k+1{arctan[Z1(Ra1−Ra2)Ra2Xa1−Xa2Ra1]+nπ}(n=0,1,2,⋯). (6) 通常,n表示任意整数,为了便于加工,设置n=1.
1.2 微带线TL2的设计
图 1中串联微带线TL1之后的输入阻抗记为Zin2,对应的导纳为Yin2. 微带线TL2的作用是消除Yin2的虚部,并保证其实部几乎不变. 经过TL1后的输入阻抗在f1和f2处具有共轭关系,由微波理论可知,导纳Yin1(f1) 和Yin1(f2)也存在共轭关系,因此下式成立:
Yin1 (f1)=G−jB,Yin1 (f2)=G+jB, (7) 为了尽量减小虚部对于匹配性能的影响,最为理想的情况是将虚部完全消除,因此可得:
Yin2 (f1)=1jZ2tanθ2=jB,Yin2(f2)=1jZ2tan(kθ2)=−jB, (8) 由式(8)可得
θ2=π1+k, (9) Z2=1Btan(kθ2). (10) 通过以上分析与计算,可以获得微带线TL1和TL2的尺寸. TL1和TL2的宽度均为2.1 mm,长度分别为4.0 mm和12.0 mm.
2. 仿真与测试结果分析
选用AVAGO公司的HSMS 2862肖特基二极管作为整流器件,串联电阻为6 Ω,导通电压为0.3 V,击穿电压为7 V,零偏置结电容为0.18 pF. 整流电路通过ADS2011软件进行仿真与优化,整流电路通过ARLON AD255 N板材进行加工与制作. 该介质板的介电常数为2.55,损耗角正切值为0.001 8,厚度为0.762 mm. 整流电路的整体尺寸为32 mm×15.4 mm×0.762 mm(图 2). 整流电路中各段微带线的尺寸列于表 1中.
表 1 微带线的尺寸Table 1. The dimensions of the microstrip linemm 微带线 宽 长 微带线 宽 长 TL1 2.1 4.0 TL6 2.1 3.0 TL2 2.1 12.0 TL7 2.1 4.0 TL3 2.1 8.5 TL8 2.1 9.1 TL4 2.1 3.0 TL9 2.1 4.0 TL5 2.1 5.0 测试系统如图 3所示,其中,射频功率信号通过Keysight N5172 B射频信号发生器产生,并通过同轴线送入整流电路中,通过数字万用表测试整流电路的输出电压.
在测试过程中,射频-直流的功率转换效率可以通过如下公式计算得到:
η(%)=PoutPin×100=V2outRL×1Pin×100, (11) 其中,Pout、Pin、Vout和RL分别表示输出直流功率、输入功率、输出直流电压以及负载电阻. 在本设计中,输入功率为14.8 dBm, 负载电阻的值为1 kΩ.
为了验证整流电路的性能,对整流电路的效率和输出直流电压随频率的变化情况进行仿真与测试(图 4). 当输入功率为14.8 dBm时,整流电路在1.79~3.01 GHz频带内,转换效率均大于60%,在1.91~3.32 GHz频带内,整流效率均大于50%. 在1.57~3.21 GHz频带内,整流电路的输出电压均大于3 V. 由图 4可知,测试效率比仿真效率稍低,造成这一现象的原因可能是二极管模型的不准确性以及加工误差导致的.
输入回波损耗的仿真值与测试值随频率的变化(图 5)结果表明:在1.91~3.32 GHz频带内,S11<-10 dB. 在2.67 GHz处,S11取得最小值-25.52 dB. 这里需要指出的是,由于测试所用矢量网络分析仪Keysight E5071C的最大输出功率为10 dBm,因此在测试S11时,输入功率为10 dBm,而并非前面所提到的最佳输入功率14.8 dBm.
图 6~图 8分别为整流电路在1.80、2.10和2.45 GHz频段,转换效率与输出电压随输入功率的变化情况. 当输入功率为15 dBm时,整流电路在1.80、2.10和2.45 GHz频带内获得最大转换效率,分别为57.2%、72.4% 和73.0%. 为了更好地评估整流电路的性能,将所提出的宽带整流电路性能与近年来国内外公开报道的宽带整流电路进行对比(表 2). 本文所提出的整流电路不仅具有宽带特性,而且尺寸更小,结构更简单.
表 2 与其他器件的性能对比Table 2. The comparison of performance with other devices3. 结论
针对目前传统宽带整流电路存在尺寸大、结构复杂的问题,本文提出了一种新型宽带小型化整流电路的设计方法,并通过软件仿真与实验测试对所设计整流电路的性能进行了验证. 结果表明:当输入功率为14.8 dBm时,整流电路在1.79~3.01 GHz频带内,转换效率均大于60%,在1.91~3.32 GHz频带内,整流效率均大于50%. 最后,通过与近年来国内外相关文献报道的性能对比,可知本文所提出的整流电路具有良好的宽带特性,且尺寸小. 因此,该整流电路在宽带射频能量收集系统中具有重要的应用价值.
-
表 1 不同市政污泥掺烧组的设备运行条件和烟气中一般污染物的质量浓度
Table 1 The operating conditions and gaseous pollutants in different sludge sewage co-combustion series
项目 湿季 干季 CK 5%MSS 10%MSS 15%MSS CK 5%MSS 10%MSS 15%MSS m(生活垃圾)/t 551.0 575.0 492.0 524.0 563.0 537.0 541.0 524.0 m(市政污泥)/t — 30.2 54.1 90.4 — 28.4 59.5 87.1 m(炉渣)/t 136.5 134.1 118.3 126.7 166.8 162.4 173.2 154.9 m(飞灰)/t 18.5 18.2 15.7 16.9 21.5 21.5 21.3 20.1 V(烟气)/万m3 209.1 224.2 190.1 198.8 216.3 228.3 219.8 218.9 ρ(颗粒)/(mg·m-3) 2.00 3.00 4.50 5.00 2.52 6.03 1.77 1.00 ρ(HCl)/(mg·m-3) 1.95 2.85 2.35 2.75 2.86 2.24 3.27 1.75 ρ(CO)/(mg·m-3) 3.4 3.7 3.5 3.7 4.1 4.0 4.3 4.0 ρ(SO2)/(mg·m-3) 24 23 20 23 20 20 21 23 φ(O2)/% 6.71 6.63 6.77 6.93 6.83 6.88 6.91 6.75 发电量/(kW·h) 237 717 238 064 232 786 229 677 250 000 253 506 253 909 251 953 T锅炉/℃ 995 1 001 1 010 993 983 984 987 988 P蒸汽/MPa 4 4 4 4 4 4 4 4 T蒸汽/℃ 436 438 437 435 431 432 434 434 表 2 湿季与干季条件下生活垃圾与市政污泥掺烧原料中主要元素的质量分数
Table 2 The elemental compositions of municipal solid waste and sludge sewage in wet season and dry season
投放原料 季节 w(C)/% w(H)/% w(N)/% w(S)/% w(O)/% w(Cl)/% 生活垃圾 湿季 16.23 2.43 0.45 0.07 12.25 0.11 干季 15.85 2.19 0.46 0.10 10.17 0.12 市政污泥 湿季 16.66 2.89 2.64 0.99 19.95 0.04 干季 17.04 2.95 2.69 0.97 19.92 0.04 表 3 不同市政污泥掺烧组的PCDD/Fs排放与毒性当量平衡
Table 3 The emission and toxic equivalent quantity balance of PCDD/Fs in different combustion series
项目 湿季 干季 CK 5% MSS 10% MSS 15% MSS CK 5% MSS 10% MSS 15% MSS 投入 焚烧原料/
(ng TEQ·kg-1)8.8 12.2 14.0 4.7 12.4 12.5 13.0 12.2 输出 炉渣/
(ng TEQ·kg-1)0.8 1.2 0.5 0.4 8.0 8.3 8.3 7.6 飞灰/
(ng TEQ·kg-1)1 129.5 1 157.2 973.4 684.2 16.3 17.6 13.4 12.2 烟气/
(ng TEQ·m-3)0.009 0.009 0.011 0.030 0.024 0.012 0.048 0.019 总排放/ (ng TEQ·kg-1) 38.1 35.1 28.1 19.0 3.1 3.3 3.1 2.4 毒性当量平衡/(ng TEQ·kg-1) 29.2 22.9 14.1 14.3 -9.3 -9.2 -9.9 -9.9 注:总排放是指单位质量焚烧原料最终排放的PCDD/Fs毒性当量;毒性当量平衡=总排放-总投入,指单位质量焚烧原料总排放与其本身PCDD/Fs毒性当量变化. 表 4 焚烧原料中各元素质量分数、PCDD/Fs毒性当量与排放的PCDD/Fs毒性当量的线性回归模型P值
Table 4 The P value of linear regression model of elements, Toxic Equivalent Quantity of PCDD/Fs in incineration materials and PCDD/Fs emissions in co-combustion
PCDD/Fs毒性当量 w(O)/% w(H)/% m(S)/m(Cl) w(C)/% 焚烧原料中的PCDD/Fs毒性当量 烟气 0.000 0.000 0.000 — — 飞灰 0.000 — — 0.027 0.017 炉渣 — 0.000 0.026 — — 表 5 APCD处理对烟气中PCDD/Fs毒性当量的影响
Table 5 The influence of APCD treatment on Toxic Equivalent Quantity of PCDD/Fs in flue gas
烟气中PCDD/Fs毒性当量/(ng TEQ·m-3) CK 10%MSS 处理前 处理后 处理前 处理后 湿季 7.330 0.009 4.610 0.011 干季 0.157 0.024 0.157 0.048 -
[1] MENG X Z, VENKATESAN A K, NI Y L, et al. Organic contaminants in Chinese sewage sludge:a meta-analysis of the literature of the past 30 years [J]. Environmental Science & Technology, 2016, 50(11):5454-5466. http://smartsearch.nstl.gov.cn/paper_detail.html?id=1648edc5322ae00f0673be7523fd58ce
[2] DAI J Y, XU M Q, CHEN J P, et al. PCDD/F, PAH and heavy metals in the sewage sludge from six wastewater treatment plants in Beijing, China[J]. Chemosphere, 2007, 66(2):353-361. doi: 10.1016/j.chemosphere.2006.04.072
[3] 廖侃, 杨浩文, 王浩.浅析广东省市政污泥处理处置现状及建议[J].广州化工, 2019, 46(4):126-127. LIAO K, YANG H W, WANG H. Brief analysis and suggestions on the present situation of treatment and disposal of municipal sludge in Guangdong province[J].广州化工, 2019, 46(4):126-127. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gdhg201904061 [4] KACPRZAK M, NECZAJ E, FIJALKOWSKI K, et al. Sewage sludge disposal strategies for sustainable development[J]. Environment Research, 2017, 156:39-46. doi: 10.1016/j.envres.2017.03.010
[5] LOMBARDI L, NOCITA C, BETTAZZI E, et al. Carnevale, environmental comparison of alternative treatments for sewage sludge:an italian case study[J]. Waste Managagement, 2017, 69:365-376. doi: 10.1016/j.wasman.2017.08.040
[6] RAHEEM A, SIKARWAR V S, HE J, et al. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge:a review[J]. Chemical Engineering Journal, 2018, 337:616-641. doi: 10.1016/j.cej.2017.12.149
[7] FANG W, DELAPP R C, KOSSON D S, et al. Release of heavy metals during long-term land application of sewage sludge compost:percolation leaching tests with repeated additions of compost[J]. Chemosphere, 2017, 169:271-280. doi: 10.1016/j.chemosphere.2016.11.086
[8] YU L, ZHENG J, YYAN X, et al. Characterization and mass balance of PCDD/Fs during the co-combustion of sewage sludge in a grate-type municipal solid waste incineration[J]. Procedia Environmental Sciences, 2016, 31:303-308. doi: 10.1016/j.proenv.2016.02.040
[9] LU J W, ZHANG S K, HAI J, et al. Status and perspectives of municipal solid waste incineration in China:a comparison with developed regions[J]. Waste Management, 2017, 69:170-186. doi: 10.1016/j.wasman.2017.04.014
[10] NGO T H, TSOU H H, CHEN Y E, et al. Sources identification of PCDD/Fs in soil and atmospheric deposition in Taiwan[J]. Chemosphere, 2018, 208:374-381. doi: 10.1016/j.chemosphere.2018.05.195
[11] AMAND L E, KASSMAN H K. Decreased PCDD/F formation when co-firing a waste fuel and biomass in a CFB boiler by addition of sulphates or municipal sewage sludge[J]. Waste Management, 2013, 33(8):1729-1739. doi: 10.1016/j.wasman.2013.03.022
[12] SUN X L, KIDO T, HONMA S, et al. The relationship between dioxins exposure and risk of prostate cancer with steroid hormone and age in vietnamese men[J]. Science of Total Environment, 2017, 595:842-848. doi: 10.1016/j.scitotenv.2017.04.013
[13] FRACCHIOLLA N S, ANNALORO C, GUIDOTTI F B, et al. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin (TCDD) role in hematopoiesis and in hematologic diseases:a critical review[J]. Toxicology, 2016, 374:60-68. doi: 10.1016/j.tox.2016.10.007
[14] LI J F, ZHANG Y, SUN T T, et al. The health risk levels of different age groups of residents living in the vicinity of municipal solid waste incinerator posed by PCDD/Fs in atmosphere and soil[J]. Science of Total Environment, 2018, 631:81-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e930d0c4cfdf18bffb86170863d932ab
[15] LIN H, MA X. Simulation of co-incineration of sewage sludge with municipal solid waste in a grate furnace incinerator[J]. Waste Management, 2012, 32(3):561-567. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=03e903a44077302e46b89a7b8321bda5
[16] LI S, LI Y, LU Q, et al. Integrated drying and incineration of wet sewage sludge in combined bubbling and circulating fluidized bed units[J]. Waste Management, 2014, 34(12):2561-2566. doi: 10.1016/j.wasman.2014.08.018
[17] MURAKAMI T, SUZUKI Y, NAGASAWA H, et al. Combustion characteristics of sewage sludge in an incineration plant for energy recovery[J]. Fuel Processing Technology, 2009, 90(6):778-783. doi: 10.1016/j.fuproc.2009.03.003
[18] ZHANG G, HAI J, CHENG J, Characterization and mass balance of dioxin from a large-scale municipal solid waste incinerator in China[J]. Waste Management, 2012, 32(6):1156-1162. doi: 10.1016/j.wasman.2012.01.024
[19] 国家环保部, 国家质量监督检验检疫总局.生活垃圾焚烧污染控制标准: GB18485-2014[S/OL].北京: 中国环境科学出版社, 2014-06-04[2019-12-15].http://www.doc88.com/p-6804396278219.html. [20] CHANG Y M, FAN W P, DAI W C, et al. Characteristics of PCDD/F content in fly ash discharged from municipal solid waste incinerators[J]. Journal of Hazadous Materials, 2011, 192(2):521-529. doi: 10.1016/j.jhazmat.2011.05.055
[21] SUN J, HU J, ZHU G, et al. PCDD/Fs distribution characteristics and health risk assessment in fly ash discharged from MSWIs in China[J]. Ecotoxicology and Environmental Safety, 2017, 139:83-88. doi: 10.1016/j.ecoenv.2017.01.015
[22] WU S, ZHOU J, PAN Y, et al. Dioxin distribution characteristics and health risk assessment in different size particles of fly ash from MSWIs in China[J]. Waste Management, 2016, 50:113-120. doi: 10.1016/j.wasman.2016.01.038
[23] SUN J, TANG J, CHEN Z, et al. PCDD/Fs profile in ambient air of different types factories and human health risk assessment in Suzhou of Jiangsu province, China [J]. Atmospheric Pollution Research, 2017, 8(1):74-79. doi: 10.1016/j.apr.2016.07.010
[24] LUNDIN L, AURELL J, MARKLUND S. The behavior of PCDD and PCDF during thermal treatment of waste incineration ash[J]. Chemosphere, 2011, 84(3):305-310. doi: 10.1016/j.chemosphere.2011.04.014
[25] MININNI G, SBRILLI A, GUERRIERO E, et al. Dioxins and furans formation in pilot incineration tests of sewage sludge spiked with organic chlorine[J]. Chemosphere, 2004, 54(9):1337-1350. doi: 10.1016/S0045-6535(03)00252-2
[26] LU P, HUANG Q X, BOURTSALAS A C, et al. Review on fate of chlorine during thermal processing of solid wastes[J]. Journal of Environment Science, 2019, 78:13-28. doi: 10.1016/j.jes.2018.09.003
[27] ZHAO Y Y, ZHAN J Y, LIU G R, et al. Field study and theoretical evidence for the profiles and underlying mechanisms of PCDD/F formation in cement kilns co-incinerating municipal solid waste and sewage sludge[J]. Waste Management, 2017, 61:337-344. doi: 10.1016/j.wasman.2016.12.008
[28] ZHANG Y F, ZHANG S Y, MAO Q, et al. Volatility and partitioning of Cd and Pb during sewage sludge thermal conversion[J]. Waste Management, 2018, 75:333-339. doi: 10.1016/j.wasman.2018.01.042
[29] IINO F, IMAGAWA T, TAKEUCHI M, et al. De novo synthesis mechanism of polychlorinated dibenzofurans from polycyclic aromatic hydrocarbons and the characteristic isomers of polychlorinated naphthalenes[J]. Environmental Science and Technology, 1999, 33(7):1038-1043. doi: 10.1021/es980857k
[30] ZHANG G, HAI J, REN M Z, et al. Emission, mass balance, and distribution characteristics of PCDD/Fs and heavy metals during cocombustion of sewage sludge and coal in power plants[J]. Environmental Science and Technology, 2013, 147(4):2123-2130. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f3035a680247f3af84e683060392c9cc
[31] MA H T, DU N, LIN X Y, et al. Inhibition of element sulfur and calcium oxide on the formation of PCDD/Fs during co-combustion experiment of municipal solid waste[J]. Science of Total Environment, 2018, 633:1263-1271. doi: 10.1016/j.scitotenv.2018.03.282
[32] ZHAN M X, WANG T J, YANG J, et al. The Behaviors and relationships of PCDD/Fs and chlorobenzenes in the whole process of one municipal solid waste incinerator[J]. Aerosol and Air Quality Research, 2018, 18(12):3134-3146. doi: 10.4209/aaqr.2018.03.0092
[33] 张海军, 倪余文, 张雪萍, 等.城市生活垃圾焚烧系统中二(噁)英的生成与质量平衡[J].环境科学, 2008, 29(4):1113-1137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx200804048 ZHANG H J, NI Y W, ZHANG X P, et al. PCDD/F formation and its mass balance in a MSW incineration system[J]. Environmental Science, 2008, 29(4):1113-1137. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjkx200804048
-
期刊类型引用(0)
其他类型引用(1)