The Effect of Rashba Spin-Orbital Coupling on Electronic Spin Susceptibility
-
摘要: 研究了哈伯德强关联系统中,Rashba自旋轨道耦合(R-SOC)对二维正方晶格的自旋磁化率的影响.在线性响应理论中,自旋磁化率可以表示为推迟格林函数.对它所遵守的运动方程做哈特利-福克近似(HFA)和无规位相近似(RPA), 再通过数值求解可得自旋磁化率.结果表明:没有R-SOC的静态磁化率Reχ( q , ω=0)随着库伦排斥势U的增大而增大,随温度T的增大而减小,库伦排斥势和温度对动态磁化率Reχ( q , ω=0)也有相似的影响.在加入R-SOC后,自旋轨道耦合的自旋磁化率实部在 q =0附近形成了平底,而且平底宽度随VSO的增加而增大.同时自旋磁化率的虚部在平底边沿上呈现剧烈起伏.该效应可作为材料的自旋轨道耦合的显著标志.Abstract: The effect of the Rashba spin-orbital coupling on the spin susceptibility of an electronic system strongly correlated with a two-dimensional square lattice is studied. According to the linear response theory, spin susceptibility can be expressed with a retarded Green function. The equations of the spin susceptibility can be numerically solved with a random phase approximation and a Hartree-Fock approximation. The numerical results show that in the absence of spin-orbital coupling the static spin susceptibility Reχ( q ; ω=0) increases with the increase of the Coulomb interaction U and decreases with increasing temperature. The Coulomb interaction U and temperature T have similar effects on the dynamic susceptibility Reχ( q ; ω=0). When the spin orbital coupling is added into the system, the real part of the spin susceptibility χ( q ) shows a flat base around the q =0. The size of the flat base increases significantly with increasing VSO while the imaginary part ofχ( q ) shows a drastic fluctuation at the boundary of the flat base. Thus, this effect becomes a clear signature of the spin-orbital coupling of a system.
-
Keywords:
- strong correlation /
- spin-orbital coupling /
- spin susceptibility /
- Green's function /
- RPA
-
1963年哈伯徳模型的提岀[1]极大地发展了布洛赫关于巡游电子的能带理论,打开了对强关联系统研究的大门,而以哈伯徳模型为基础的强关联系统磁性理论,一直以来都是凝聚态物理中的一个重要而活跃的研究领域.哈伯徳模型主要考虑了自旋取向相反的电子在同一个格点上的库仑排斥作用,即所谓的强关联项.对强关联项做哈特利福克近似(HFA)就可以得到斯通纳的能带磁性模型[2].以此为基础的巡游电子模型,克服了海森伯模型[3]中局域电子自旋磁矩的不足.这种局域电子自旋磁矩模型只能比较好地解释绝缘材料的磁性,而无法解释含有巡游电子的金属材料的磁性.近年来,随着拓扑材料的兴起[4-5],人们对自旋轨道耦台的兴趣逐渐增加.一个问题随之而来:在强关联系统中加入自旋轨道耦台[6-7],电子的自旋磁化率受到什么影响.本文主要考虑Rashba自旋轨道耦台(R-SOC)[8-11]对自旋磁化率的影响.
1. 模型和方法
考虑一个二维正方晶格结构,含有R-SOC的Hubbard模型的哈密顿量[12]为
H=Ho+Hi, (1) {{H_0} = \sum\limits_\mathit{\boldsymbol{k}} {\psi _\mathit{\boldsymbol{k}}^\dagger } \hat h(\mathit{\boldsymbol{k}}){\psi _\mathit{\boldsymbol{k}}},} (2) {{H_1} = U\sum\limits_i {{n_{i \uparrow }}} {n_{i \downarrow }} = \frac{U}{N}\sum\limits_{\mathit{\boldsymbol{k}}{\mathit{\boldsymbol{k}}^\prime }\mathit{\boldsymbol{q}}} {c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \uparrow }^\dagger } c_{{\mathit{\boldsymbol{k}}^\prime } - \mathit{\boldsymbol{q}} \downarrow }^\dagger {c_{{\mathit{\boldsymbol{k}}^\prime } \downarrow }}{c_{\mathit{\boldsymbol{k}} \uparrow }},} (3) 其中:U为同一个格点上自旋方向相反的电子之间的库仑排斥势,N为原胞数目;ψk=(ck↑, ck↓)T;ĥ(k)=εkσ0+gkσ,σ0为2×2单位矩阵,σ=(σx, σy, σz)为泡利矩阵,εk=-2t1(cos kx+cos ky)-4t2×cos kxcos ky-μ为紧束缚近似能量,t1和t2(t2 < 0)分别表示最近邻和次近邻跳跃积分,μ是化学势,矢量gk表示R-SOC[13],gk=VSO(∂εk/∂ky, -∂εk/∂kx, 0),VSO为耦合常数;ĥ(k)可以简化为
\hat h(\mathit{\boldsymbol{k}}) = \left( {\begin{array}{*{20}{l}} {{h_{ \uparrow \uparrow }}(\mathit{\boldsymbol{k}})}&{{h_{ \uparrow \downarrow }}(\mathit{\boldsymbol{k}})}\\ {{h_{ \downarrow \uparrow }}(\mathit{\boldsymbol{k}})}&{{h_{ \downarrow \downarrow }}(\mathit{\boldsymbol{k}})} \end{array}} \right), (4) 其中, h↑↑(k)=h↓↓(k)=-2t1(cos kx+cos ky)-4t2×cos kxcos ky-μ,h↑↓(k)=h↓↑*(k)=2V[(t1sin ky+2t2×cos kxsin ky)+i(t1sin kx+2t2sin kxcos ky)].
哈特里福克近似(HFA)的单电子能量为
{E_{\mathit{\boldsymbol{k\sigma }}}} = ({\varepsilon _\mathit{\boldsymbol{k}}} + \frac{1}{2}nU) + \mathit{\boldsymbol{\sigma }}{[{(\frac{1}{2}mU)^2} + |{\mathit{\boldsymbol{g}}_\mathit{\boldsymbol{k}}}{|^2}]^{\frac{1}{2}}}(\mathit{\boldsymbol{\sigma }} = \pm 1), 其中,n=〈n↓〉+〈n↑〉表示平均每个原胞的电子数,m=〈n↓〉-〈n↑〉表示相对磁化强度(以玻尔磁子μB为单位).本文不考虑自发磁化的影响(取m=0), 能带图和费米面如图 1所示.图中能带的波矢沿着二维正方晶格的第一布里渊区的对角线方向,并以该对角线的中点为坐标原点.库仑排斥势U使电子能量增加,而R-SOC引起电子能带劈裂,上下能带在布里渊区中心处相交.劈裂后的2个能带上填充的电子是自旋混合的. 图 1D、E和F分别为R-SOC加入前后的费米面.
根据线性响应理论,电子系统的自旋磁化率χ(q, ω)(以4μB2为单位)[14-16]可用推迟格林函数表示:
\chi (\mathit{\boldsymbol{q}},\omega ) = - {\langle \langle {\hat s^ - }(\mathit{\boldsymbol{q}});{\hat s^ + }( - \mathit{\boldsymbol{q}})\rangle \rangle _{\omega + {\rm{i}}{0^ + }}}, (5) 其中, 自旋密度算符为
{\hat s^ - }(\mathit{\boldsymbol{q}}) = \sum\nolimits_\mathit{\boldsymbol{k}} {c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }^\dagger } {c_{\mathit{\boldsymbol{k}} \uparrow }},{\hat s^ + }( - \mathit{\boldsymbol{q}}) = \sum\nolimits_\mathit{\boldsymbol{k}} {c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \uparrow }^\dagger } {c_{\mathit{\boldsymbol{k}} \downarrow }}. 一般情况下,自旋磁化率是一个张量[8-9],这里只考虑它的横向分量,它表示一个磁矩对垂直外磁场的响应.
推迟格林函数可以用如下运动方程求解:
\omega {\langle \langle A;B\rangle \rangle _\omega } = \langle [A,B]\rangle + {\langle \langle [A,H];B\rangle \rangle _\omega }, (6) 其中, 算符A=ck+q↓†ck↑,B=ŝ+(-q)=Σkck-q↑†ck↓. 〈[A, B]〉可以通过简单推导得到:
\langle [A,B]\rangle = \langle {n_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }}\rangle - \langle {n_{\mathit{\boldsymbol{k}} \uparrow }}\rangle , (7) 其中, 〈nkσ〉=〈ckσ†ckσ〉表示状态(k, σ)上的平均电子数,它们可以通过对角化h(k)得到.为了做RPA近似[8-11],需要计算如下对易子:
\begin{array}{*{20}{c}} {[A,{H_0}] = - {\omega _{\mathit{\boldsymbol{kq}}}}c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }^\dagger {c_{\mathit{\boldsymbol{k}} \uparrow }} + {h_{ \uparrow \downarrow }}(\mathit{\boldsymbol{k}})c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }^\dagger {c_{\mathit{\boldsymbol{k}} \downarrow }} - }\\ {{h_{ \uparrow \downarrow }}(\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}})c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \uparrow }^\dagger {c_{\mathit{\boldsymbol{k}} \uparrow }},} \end{array} (8) \begin{array}{*{20}{c}} {[A,{H_1}] = \frac{U}{N}\sum\limits_{{\mathit{\boldsymbol{k}}^\prime }{\mathit{\boldsymbol{k}}^{\prime \prime }}{\mathit{\boldsymbol{q}}^\prime }} ( c_{{\mathit{\boldsymbol{k}}^\prime } + {\mathit{\boldsymbol{q}}^\prime }}^\dagger c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} - {\mathit{\boldsymbol{q}}^\prime } \downarrow }^\dagger {c_{{\mathit{\boldsymbol{k}}^\prime } \uparrow }}{c_{\mathit{\boldsymbol{k}} \uparrow }} + }\\ {c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }^\dagger c_{{\mathit{\boldsymbol{k}}^{\prime \prime }} - {\mathit{\boldsymbol{q}}^\prime } \downarrow }^\dagger {c_{{\mathit{\boldsymbol{k}}^{\prime \prime }}}} \downarrow {c_{\mathit{\boldsymbol{k}} - {\mathit{\boldsymbol{q}}^\prime } \uparrow }}).} \end{array} (9) 在式(8)中ωkq=εk+q-εk;对式(9)首先取q′=0项,然后对其中q′≠0项做近似(k′=k-q′,k″=k+q),忽略其余项,并将波矢和自旋相同的产生算符与湮灭算符的乘积ckσ†ckσ用它们的统计平均值〈ckσ†ckσ〉=nkσ代替.式(9)可近似为:
\begin{array}{*{20}{l}} {[A,{H_1}] = U({n_ \downarrow } - {n_ \uparrow })c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }^\dagger {c_{\mathit{\boldsymbol{k}} \uparrow }} + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{U}{N}({n_{\mathit{\boldsymbol{k}} \uparrow }} - {n_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }})c_{{\mathit{\boldsymbol{k}}^\prime } + \mathit{\boldsymbol{q}} \downarrow }^\dagger {c_{{\mathit{\boldsymbol{k}}^\prime } \uparrow }}.} \end{array} (10) 将式(7)、(8)、(10)带入式(6)得到运动方程:
\begin{array}{*{20}{l}} {(\omega + {\omega _{\mathit{\boldsymbol{kq}}}} - Um)\langle \langle c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }^\dagger {c_{\mathit{\boldsymbol{k}} \uparrow }};{{\hat s}^\dagger }( - \mathit{\boldsymbol{q}})\rangle \rangle = }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} ({n_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }} - {n_{\mathit{\boldsymbol{k}} \uparrow }})[1 - \frac{U}{N}\langle \langle {{\hat s}^ - }(\mathit{\boldsymbol{q}});{{\hat s}^ + }( - \mathit{\boldsymbol{q}})\rangle \rangle ] + }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {h_{ \uparrow \downarrow }}(\mathit{\boldsymbol{k}})\langle \langle c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }^\dagger {c_{\mathit{\boldsymbol{k}} \downarrow }}{{\hat s}^ + }( - \mathit{\boldsymbol{q}})\rangle \rangle - }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {h_{ \uparrow \downarrow }}(\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}})\langle \langle c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \uparrow }^\dagger {c_{\mathit{\boldsymbol{k}} \uparrow }};{{\hat s}^ + }( - \mathit{\boldsymbol{q}})\rangle \rangle .} \end{array} (11) 它们涉及到ck+q↑†ck↓、ck+q↓†ck↓和ck+q↑†ck↑的推迟格林函数.用同样的方法处理可得到一个4×4的矩阵方程:GX=Y, 其中:
\mathit{\boldsymbol{G}} = \left( {\begin{array}{*{20}{c}} {{h_{ \uparrow \downarrow }}(\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}})}&0&{\omega + {\omega _{\mathit{\boldsymbol{kq}}}}}&{ - {h_{ \uparrow \downarrow }}(\mathit{\boldsymbol{k}})}\\ 0&{{h_{ \uparrow \downarrow }}(\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}})}&{ - {h_{ \uparrow \downarrow }}(\mathit{\boldsymbol{k}})}&{\omega + {\omega _{\mathit{\boldsymbol{kq}}}}}\\ {\omega + {\omega _{\mathit{\boldsymbol{kq}}}}}&{ - {h_{ \uparrow \downarrow }}(\mathit{\boldsymbol{k}})}&{{h_{ \downarrow \uparrow }}(\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}})}&0\\ { - {h_{ \downarrow \uparrow }}(\mathit{\boldsymbol{k}})}&{\omega + {\omega _{\mathit{\boldsymbol{kq}}}}}&0&{{h_{ \downarrow \uparrow }}(\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}})} \end{array}} \right), (12) \begin{array}{l} \mathit{\boldsymbol{X}} = \left( {\begin{array}{*{20}{c}} {\langle \langle c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \uparrow }^\dagger {c_{\mathit{\boldsymbol{k}} \uparrow }};{{\hat s}^ + }( - \mathit{\boldsymbol{q}})\rangle \rangle }\\ {\langle \langle c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \uparrow }^\dagger {c_{\mathit{\boldsymbol{k}} \downarrow }};{{\hat s}^ + }( - \mathit{\boldsymbol{q}})\rangle \rangle }\\ {\langle \langle c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }^\dagger {c_{\mathit{\boldsymbol{k}} \uparrow }};{{\hat s}^ + }( - \mathit{\boldsymbol{q}})\rangle \rangle }\\ {\langle \langle c_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }^\dagger {c_{\mathit{\boldsymbol{k}} \downarrow }};{{\hat s}^ + }( - \mathit{\boldsymbol{q}})\rangle \rangle } \end{array}} \right),\\ \mathit{\boldsymbol{Y}} = \left( {\begin{array}{*{20}{c}} {({n_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }} - {n_{\mathit{\boldsymbol{k}} \uparrow }})[1 - \frac{U}{N}{X_3}(\mathit{\boldsymbol{k}},\mathit{\boldsymbol{q}})]}\\ {\frac{U}{N}({n_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \downarrow }} - {n_{\mathit{\boldsymbol{k}} \downarrow }}){X_1}({\mathit{\boldsymbol{k}}^\prime },\mathit{\boldsymbol{q}})}\\ {\frac{U}{N}({n_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \uparrow }} - {n_{\mathit{\boldsymbol{k}} \uparrow }}){X_4}({\mathit{\boldsymbol{k}}^\prime },\mathit{\boldsymbol{q}})}\\ {\frac{U}{N}({n_{\mathit{\boldsymbol{k}} \downarrow }} - {n_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \uparrow }}){X_2}({\mathit{\boldsymbol{k}}^\prime },\mathit{\boldsymbol{q}})} \end{array}} \right). \end{array} (13) 2. 结果和讨论
首先在不考虑R-SOC(VSO=0)时,强关联电子系统的自旋磁化率表示为:
\chi (\mathit{\boldsymbol{q}},\omega ) = \frac{{{\chi _0}(\mathit{\boldsymbol{q}},\omega )}}{{1 - U{\chi _0}(\mathit{\boldsymbol{q}},\omega )}}, (14) 其中,
{\chi _0}(\mathit{\boldsymbol{q}},\omega ) = N\sum\limits_\mathit{\boldsymbol{k}} {\frac{{f({E_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \uparrow }}) - f({E_{\mathit{\boldsymbol{k}} \downarrow }})}}{{\omega - ({E_{\mathit{\boldsymbol{k}} + \mathit{\boldsymbol{q}} \uparrow }} - {E_{\mathit{\boldsymbol{k}} \downarrow }}) + {\rm{i}}{0^ + }}}} , (15) χ0(q, ω)表示无相互作用电子系统的横向动态磁化率[15-16].静态磁化率(ω=0)与库仑排斥势、温度及化学势的关系如图 2所示.从图 2A可以看出,Reχ(q, ω=0)随着库仑排斥势U的增大而增大[15, 18],同时随着库仑排斥势的加入,在布里渊区域边界的高对称点出现了1个峰值,并且会随着U的增大向中间移动.从图 2B可以看出,在较低温度下,Reχ(q, ω=0)随温度的变化较小,但仍然存在一个随着温度的升高而逐渐减小的趋势,因为温度越高,自旋涨落越大,系统对外磁场的响应越弱.从图 2C可以看出,在一定的范围内,Reχ(q, ω=0)随化学势的增大逐渐增大,因为电子的化学势越大意味着填充能带的电子数越多,系统的自旋磁矩对外磁场的响应越强,但是超出了限度,Reχ(q, ω=0)将随着μ的增大而逐渐减小.
不考虑自旋轨道耦合作用,动态磁化率(ω≠0)与库仑排斥势、温度及化学势的关系如图 3所示.图中角频率取特殊值ω=0.1.与图 2A、B和C对比,磁化率的实部几乎无变化,但是动态磁化率的虚部出现,并且随某些参数的变化而发生显著变化.动态磁化率的虚部可以通过中子散射实验直接观测,表示电磁波在介质中传播受到阻尼,从而产生能量损耗.
现在加入自旋轨道耦合R-SOC(VSO≠0),采用迭代法求解矩阵方程GX=Y.此时静态磁化率随自旋轨道耦合强度的变化关系如图 4A所示.静态磁化率Reχ(q, ω=0)随着自旋轨道耦合强度的增大而减小,自旋轨道耦合作用对磁化率有显著的抑制作用,特别是自旋轨道耦合导致静态磁化率Reχ(q, ω=0)在q=0周围出现1个下陷的平底.随着自旋轨道耦合强度的增大,平底宽度增加.磁化率平底的大小可以清楚地显示材料自旋轨道耦合的强弱.因此,这个磁化率平底可作为自旋轨道耦合强弱的标志.
动态磁化率随自旋轨道耦合系数的变化如图 4B、C所示,图中角频率的取值为ω=0.1.与图 4A对比可以看出,动态磁化率的实部与静态磁化率的变化趋势很接近,呈现基本相同的磁化率平底;非常显著的特点是动态磁化率的虚部在磁化率平底的边界位置呈现尖锐的起伏.该效应可作为自旋轨道耦合强弱的显著标志.
3. 结论
研究了Rashba自旋轨道耦合作用下二维正方晶格中的电子自旋磁化率,推导出在RPA下磁化率遵守的一般方程,并对方程进行了数值求解,得到了库仑排斥势、温度、化学势和自旋轨道耦合强度等不同参数下的静态和动态磁化率.计算结果表明:自旋轨道耦合作用对磁化率有显著的影响,自旋轨道耦合一方面抑制系统的磁化率,另一方面引起磁化率平底,而且自旋轨道耦合越强,磁化率平底越宽.动态磁化率的虚部则在磁化率平底边界位置出现强烈起伏,因而,磁化率平底的效应成为材料自旋轨道耦合强弱的显著标志.
-
-
[1] HUBBARD J. Electron correlations in narrow energy bands[J]. Proceedings of the Royal Society of London A, 1963, 276:238-250. http://www.mendeley.com/research/electron-correlation-narrow-energy-bands/
[2] STONER E C. Collective electron specific heat and spin paramagnetism in metals[J]. Proceedings of the Royal Society of London A, 1936, 154:656-678. http://adsabs.harvard.edu/abs/1936RSPSA.154..656S
[3] HEISENBERG W. Zur theorie des ferromagnetismus[J]. Zeitschrift Fur Physik, 1928, 49:619-636. doi: 10.1007/BF01328601
[4] KANE C L, MELE E J. Z2 topological order and the quantum spin hall effect[J]. Physical Review Letters, 2005, 95(14):146802/1-4. doi: 10.1103/PhysRevLett.95.146802
[5] QI X L, ZHANG S C. Topological insulators and superconductors[J]. Review of Modern Physics, 2011, 83:1057/1-5. doi: 10.1103/RevModPhys.83.1057
[6] DRESSELHAUS G. Spin-orbit coupling effects in zinc blende structures[J]. Physical Review, 1955, 100:580-586. doi: 10.1103/PhysRev.100.580
[7] SAKURAI J J. Advanced Quantum Mechanics[D]. New Jersey: Addison-Wesley, 1980.
[8] BYCHKOV Y A, RASHBA E I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers[J]. Journal of Physics C, 1984, 17:6039-6045. doi: 10.1088/0022-3719/17/33/015
[9] RASHBA E I. Theory of electrical spin injection:tunnel contacts as a solution of the conductivity mismatch problem[J]. Physical Review B, 2000, 62:R16267-R16270. doi: 10.1103/PhysRevB.62.R16267
[10] YOKOYAMA T, ONARI S, TANAKA Y. Enhanced triplet superconductivity in noncentrosymmetric systems[J]. Physical Review B, 2007, 75:172511/1-5. doi: 10.1103/PhysRevB.75.172511
[11] YANASE Y, SIGRIST M. Superconductivity and magne-tism in non-centrosymmetric system:application to CePt3Si[J]. Journal of the Physical Society of Japan, 2008, 77:124711/1-5. doi: 10.1143/JPSJ.77.124711
[12] GRECO A, SCHNYDER A P. Mechanism for unconventional superconductivity in the hole-doped Rashba-Hubbard model[J]. Physical Review Letters, 2018, 120:177002/1-5. doi: 10.1103/PhysRevLett.120.177002
[13] YANASEA Y, JUJOB T, NOMURA T. Theory of superconductivity in strongly correlated electron systems[J]. Physics Reports, 2003, 387:1-149. doi: 10.1016/j.physrep.2003.07.002
[14] DONIACH S, SONDHEIMER E H. Green's functions for solid state physicists[M]. London:The Ben-jamin/Cummings Publishing Company, Inc, 1982.
[15] 王怀玉.凝聚态物理中的格林函数理论[M].北京:科学岀版社, 2008. [16] 李正中.固体理论[M]. 2版.北京:高等教育岀版社, 2002. [17] ROER A T, KREISEL A, EREMIN I. Pairing symmetry of the one-band Hubbard model in the paramagnetic weak-coupling limit:a numerical RPA study[J]. Physical Review B, 2015, 92(10):104505/1-11. doi: 10.1103/PhysRevB.92.104505
[18] 费特, 瓦立克.多粒子系统的量子理论[M].北京:科学岀版社, 1984. -
期刊类型引用(0)
其他类型引用(1)