A Rigidity Theorem of λ-Hypersurfaces
-
摘要: 研究了λ-超曲面,得到了有关完备的λ-超曲面的一个积分等式:若 X :M→Rn+1是n-维完备的具有多项式面积增长的λ-超曲面且满足S有界,则有∫M(|▽H|2+(H-λ)(H+S(λ-H)))e−|X|22dμ=0,其中,H是M的平均曲率,S是M的第二基本形式模长平方.并由该积分等式得到了一个刚性结果.Abstract: λ-hypersurfaces are studied and a rigidity result about complete λ-hypersurfaces is given. If X :M→Rn+1 is an n-dimensional complete λ-hypersurface with polynomial area growth and satisfies S bounded, then ∫M(|▽H|2+(H-λ)(H+S(λ-H)))e−|X|22dμ=0, where H is the mean curvature of M, S is the squared norm of the second fundamental form of M. As an application of the integral equation, a rigidity result about complete λ-hypersurfaces is obtained.
-
Keywords:
- mean curvature /
- the weighted area functional /
- λ-hypersurfaces
-
令X:M→$\mathbb{R}$n+1是(n+1)-维欧氏空间中的n-维光滑超曲面. 2018年,CHENG和WEI[1]引入了保加权体积的平均曲率流,具体为:称一类满足X(·, 0)= X(·)的光滑浸入X(·, t):M→$\mathbb{R}$n+1为保加权体积的平均曲率流,若满足下面的方程
$$ \frac{{\partial \mathit{\boldsymbol{X}}(t)}}{{\partial t}} = - \alpha (t)\mathit{\boldsymbol{N}}(t) + \mathit{\boldsymbol{H}}(t), $$ (1) 其中
$$ \alpha (t) = \frac{{\int_M H (t)\langle \mathit{\boldsymbol{N}}(t),\mathit{\boldsymbol{N}}\rangle {{\rm{e}}^{ - \frac{{|\mathit{\boldsymbol{X}}{|^2}}}{2}}}{\rm{d}}\mu }}{{\int_M {\langle \mathit{\boldsymbol{N}}(} t),\mathit{\boldsymbol{N}}\rangle {{\rm{e}}^{ - \frac{{|\mathit{\boldsymbol{X}}{|^2}}}{2}}}{\rm{d}}\mu }}, $$ H(t)=H(·, t)、N(t)、H(t)分别表示超曲面Mt=X(Mn, t)在点X(·, t)处的平均曲率向量、单位内法向量、平均曲率,N是X:M→$\mathbb{R}$n+1的单位法向量.可以证明方程(1)保持如下定义的加权体积V(t):
$$ V(t) = \int_M {\langle \mathit{\boldsymbol{X}}(} t),\mathit{\boldsymbol{N}}\rangle {{\rm{e}}^{ - \frac{{|\mathit{\boldsymbol{X}}{|^2}}}{2}}}{\rm{d}}\mu . $$ 加权面积泛函A:(-ε, ε)→$\mathbb{R}$定义为
$$ A(t) = \int_M {{{\rm{e}}^{ - \frac{{|\mathit{\boldsymbol{X}}(t){|^2}}}{2}}}} {\rm{d}}{\mu _t}, $$ 其中, dμt是X(t)诱导度量下M的面积元.令X(t):M→$\mathbb{R}$n+1是X的变分,其中X(0)= X.若V(t)是常数,称X(t):M→$\mathbb{R}$n+1是X的保加权体积的变分.
CHENG和WEI[1]证明了:对所有的保持加权体积的变分来说,X:M→$\mathbb{R}$n+1是加权面积泛函A(t)的临界点的充分必要条件是存在常数λ满足
$$ \langle \mathit{\boldsymbol{X}},\mathit{\boldsymbol{N}}\rangle + H = \lambda , $$ (2) 其中,H为M的平均曲率; 并给出λ-超曲面的定义:如果一个浸入超曲面X:M→$\mathbb{R}$n+1满足方程(2),则称之为λ-超曲面.随后,学者们得到了若干有关λ-超曲面的刚性定理和分类定理[2-12].
若λ=0,也就是说,〈 X, N 〉+H=0,则λ-超曲面就是平均曲率流的自收缩子.由此可见,λ-超曲面是自收缩子的推广.
关于0-超曲面的研究,已有很多好的结果.如,LE和SESUM[13]证明了:若M是(n+1)-维欧氏空间中的n-维完备的具有多项式面积增长的嵌入自收缩子并且满足S < 1,则S=0且M就是超平面$\mathbb{R}$n,其中S表示第二基本形式的模长平方;CAO和LI[14]研究了更广泛的情形并证明了:
定理A 若M是(n+1)-维欧氏空间中的n-维完备的具有多项式面积增长的自收缩子并且满足S≤1,则M要么是超平面$\mathbb{R}$n,要么是圆球面Sn$(\sqrt{n})$,要么是柱面$S^{m}(\sqrt{m}) \times \mathbb{R}^{n-m}$,1≤m≤n-1.
n-维欧氏空间$\mathbb{R}$n、n-维球面Sn(r)和n-维柱面Sk(r)×$\mathbb{R}$n-k都是λ-超曲面,其λ的值分别为0、n/r-r和k/r-r. CHENG和WEI[1]证明了:若M是n-维完备的具有多项式面积增长的嵌入λ-超曲面,且满足H-λ≥0和λ(f3(H-λ)-S)≥0,则M只能是Sk(r)×$\mathbb{R}$n-k(0≤k≤n),其中$f_{3}=\sum_{j=1}^{n} \lambda_{j}^{3}$,λj是M的主曲率. CHENG等[2]分类了具有多项式面积增长的且平均曲率H和第二基本形式长度平方S满足一个不等式的完备λ-超曲面,并得到了没有多项式面积增长这一条件的刚性结果.
受文献[13]、[14]的启发,本文考虑了λ-超曲面的相关问题,得到了关于λ-超曲面的一个积分等式,并由此积分等式得到了相应的刚性结果.
1. 预备知识
首先,介绍文中所用的基本公式.令X :Mn→$\mathbb{R}$n+1是(n+1)-维欧氏空间$\mathbb{R}$n+1中的n-维连通的超曲面.取局部标准正交标架场{eA}A=1n+1,其对偶为{ωA}A=1n+1,要求限制在Mn上时,e1, …, en是Mn的切平面的基底.则
$$ {\rm{d}}\mathit{\boldsymbol{X}} = \sum\limits_{i = 1}^n {{\omega _i}} {\mathit{\boldsymbol{e}}_i},{\rm{d}}{\mathit{\boldsymbol{e}}_i} = \sum\limits_{j = 1}^n {{\omega _{ij}}} {\mathit{\boldsymbol{e}}_j} + {\omega _{i(n + 1)}}{\mathit{\boldsymbol{e}}_{n + 1}},{\rm{d}}{\mathit{\boldsymbol{e}}_{n + 1}} = \sum\limits_{i = 1}^n {{\omega _{(n + 1)i}}} {\mathit{\boldsymbol{e}}_i}. $$ 限制在Mn上有
$$ {\omega _{n + 1}} = 0,{\omega _{(n + 1)i}} = - \sum\limits_{j = 1}^n {{h_{ij}}} {\omega _j},{h_{ij}} = {h_{ji}}, $$ 其中,hij表示X:Mn→$\mathbb{R}$n+1的第二基本形式的分量,$H=\sum_{j=1}^{n} h_{j j}$是平均曲率. $II = \sum_{i, j = 1}^n {{h_{ij}}} {\omega _i} \otimes {\omega _j}\mathit{\boldsymbol{N}}$是X:Mn→$\mathbb{R}$n+1的第二基本形式,N=en+1是单位法向量.令hijk=▽khij, hijkl=▽l▽khij, 其中, ▽j是协变微分算子. Gauss方程、Codazzi方程和Ricci方程分别为
$$ {{R_{ijkl}} = {h_{ik}}{h_{jl}} - {h_{il}}{h_{jk}},} $$ (3) $$ {{h_{ijk}} = {h_{ikj}},} $$ (4) $$ {{h_{ijkl}} - {h_{ijlk}} = \sum\limits_{m = 1}^n {{h_{im}}} {R_{mjkl}} + \sum\limits_{m = 1}^n {{h_{mj}}} {R_{mikl}},} $$ (5) 其中, Rijkl是曲率张量的分量.一个函数F的协变导数可以表示为F, i=▽iF, F, ij=▽j▽iF.对于λ-超曲面,我们定义一个椭圆算子$\mathcal{L}$如下:
$$ \mathcal{L}f = \Delta f - \langle X,\nabla f\rangle , $$ (6) 其中, Δ和▽分别表示λ-超曲面的拉普拉斯算子和梯度算子. $\mathcal{L}$算子由COLDING和MINICOZZI[15]引进研究自收缩子,并由CHENG和WEI[1]用于研究λ-超曲面.
其次,给出本文定理证明需用的引理.
引理1[15] 令X :M→$\mathbb{R}$n+1是完备的超曲面.若u和v是C2函数, 且满足
$$ \int_M {(|u\nabla v| + |\nabla u||\nabla v| + |u\mathcal{L}v|)} {{\rm{e}}^{ - \frac{{|\mathit{\boldsymbol{X}}{|^2}}}{2}}}{\rm{d}}\mu < + \infty , $$ (7) 则
$$ \int_M u (\mathcal{L}v){{\rm{e}}^{ - \frac{{|\mathit{\boldsymbol{X}}{|^2}}}{2}}}{\rm{d}}\mu = - \int_M {\langle \nabla u,\nabla v\rangle } {{\rm{e}}^{ - \frac{{|\mathit{\boldsymbol{X}}{|^2}}}{2}}}{\rm{d}}\mu . $$ (8) 引理2[1] 若X :M→$\mathbb{R}$n+1是λ-超曲面,则
$$ {\mathcal{L}H = \Delta H - \sum\limits_{i = 1}^n {\langle \mathit{\boldsymbol{X}},{\mathit{\boldsymbol{e}}_i}\rangle } {H_{,i}} = H + S(\lambda - H),} $$ (9) $$ {\frac{1}{2}\mathcal{L}S = \sum\limits_{i,j,k = 1}^n {h_{ijk}^2} + (1 - S)S + \lambda {f_3},} $$ (10) 其中, $H=\sum\limits_{i=1}^{n} h_{i i}$, $S=\sum\limits_{i, j=1}^{n} h_{i j}^{2}$$f_{3}=\sum\limits_{i, j, k=1}^{n} h_{i j} h_{j k} h_{i k}$.
2. 主要结论及其证明
定理1 若X :M→$\mathbb{R}$n+1是n-维完备的具有多项式面积增长的λ-超曲面且满足S有界,则
$$ \int_M {(|\nabla H{|^2} + (} H - \lambda )(H + S(\lambda - H))){{\rm{e}}^{ - \frac{{|\mathit{\boldsymbol{X}}{|^2}}}{2}}}{\rm{d}}\mu = 0, $$ 其中, H是M的平均曲率,S是M的第二基本形式模长平方.
证明 因为〈 X, N 〉+H=λ,则
$$ {{H_{,i}} = \sum\limits_{j = 1} {{h_{ij}}} \langle \mathit{\boldsymbol{X}},{\mathit{\boldsymbol{e}}_j}\rangle ,} $$ (11) $$ {{H_{,ik}} = \sum\limits_{j = 1}^n {{h_{ijk}}} \langle \mathit{\boldsymbol{X}},{\mathit{\boldsymbol{e}}_j}\rangle + {h_{ik}} + \sum\limits_{j = 1}^n {{h_{ij}}} {h_{jk}}(\lambda - H),} $$ (12) $$ {\Delta H = \sum\limits_{i = 1}^n {{H_{,ii}}} = \sum\limits_{i = 1}^n {{H_{,i}}} \langle \mathit{\boldsymbol{X}},{\mathit{\boldsymbol{e}}_i}\rangle + H + S(\lambda - H).} $$ (13) 由引理2可知
$$ {\frac{1}{2}\mathcal{L}{H^2} = |\nabla H{|^2} + {H^2} + S(\lambda - H)H,} $$ (14) $$ {\frac{1}{2}\mathcal{L}{{(H - \lambda )}^2} = |\nabla H{|^2} + (H - \lambda )(H + S(\lambda - H)).} $$ (15) 因为S有界,则H2和S(λ-H)H有界.因为M具有多项式面积增长,则由λ-超曲面的定义以及式(11),有
$$ \int_M {(|\nabla H{|^2} + (} H - \lambda )(H + S(\lambda - H))){{\rm{e}}^{ - \frac{{|\mathit{\boldsymbol{X}}{|^2}}}{2}}}{\rm{d}}\mu $$ (16) 有界.由引理1、式(15)得到:
$$ \int_M {(|\nabla H{|^2} + (} H - \lambda )(H + S(\lambda - H))){{\rm{e}}^{ - \frac{{|\mathit{\boldsymbol{X}}{|^2}}}{2}}}{\rm{d}}\mu = 0. $$ (17) 推论1 若X :M→$\mathbb{R}$n+1是n-维完备的具有多项式面积增长的λ-超曲面且满足S有界和
$$ {(H - \lambda )^2}S \le H(H - \lambda ), $$ (18) 则M要么是超平面n,要么是圆球面Sn(r),要么是柱面Sk(r)×$\mathbb{R}$n-k (1≤k≤n-1).
证明 由定理1以及已知条件(H- λ)2S≤H(H- λ),可得
$$ (H - \lambda )(H + S(\lambda - H)) \equiv 0 $$ (19) 和H为常数.若H- λ ≡0,由式(9)得到H= λ ≡0,则M是超平面[14].若H$\not \equiv $λ,由式(19)可知S=H/(H- λ).此时,式(12)变为
$$ \sum\limits_{j = 1}^n {{h_{ij}}} {h_{jk}}(H - \lambda ) = \sum\limits_{j = 1}^n {{h_{ijk}}} \langle \mathit{\boldsymbol{X}},{\mathit{\boldsymbol{e}}_j}\rangle + {h_{ik}}. $$ (20) 式(20)两端同乘hik,并对i和k求和,可以得到
$$ \sum\limits_{i,j,k = 1}^n {{h_{ij}}} {h_{jk}}{h_{ik}}(H - \lambda ) = S + \sum\limits_{j = 1}^n {\frac{1}{2}} {S_{,j}}\langle \mathit{\boldsymbol{X}},{\mathit{\boldsymbol{e}}_j}\rangle = S, $$ (21) 即
$$ {f_3} = \sum\limits_{i,j,k = 1}^n {{h_{ij}}} {h_{jk}}{h_{ik}} = \frac{S}{{H - \lambda }}. $$ (22) 由引理2和式(22)可知
$$ 0 = \frac{1}{2}\mathcal{L}S = \sum\limits_{i,j,k = 1}^n {h_{ijk}^2} + (1 - S)S + \lambda {f_3} = \sum\limits_{i,j,k = 1}^n {h_{ijk}^2} . $$ (23) 由此知道M是等参超曲面且M要么是圆球Sn(r),要么是柱面Sk(r)×$\mathbb{R}$n-k.
注记1 本文仅以定理1和推论1为例来说明如何得到λ-超曲面的积分等式和刚性定理.事实上,用类似的方法可以得到一些类似的积分等式和刚性定理.
-
[1] CHENG Q M, WEI G X. Complete λ-hypersurfaces of the weighted volume-preserving mean curvature flow[J]. Calculus of Variations and Partial Differential Equations, 2018, 57(2):32/1-21. doi: 10.1007/s00526-018-1303-4
[2] CHENG Q M, OGATA S, WEI G X. Rigidity theorems of λ-hypersurfaces[J]. Communications in Analysis and Geometry, 2016, 24:45-58. doi: 10.4310/CAG.2016.v24.n1.a2
[3] 成庆明, 魏国新.完备λ-超曲面的几何[J].中国科学:数学, 2018, 48(6):699-710. http://www.cnki.com.cn/Article/CJFDTotal-JAXK201806003.htm CHENG Q M, WEI G X. Geometry of complete λ-hypersurfaces[J]. Scientia Sinica:Mathematica, 2018, 48(6):699-710. http://www.cnki.com.cn/Article/CJFDTotal-JAXK201806003.htm
[4] CHENG Q M, WEI G X. Examples of compact λ-hypersurfaces in Euclidean spaces[J/OL]. Science China Mathematics, (2019-08-29)[2020-02-20]. https://doi.org/10.1007/s11425-018-9464-7.
[5] CHANG J E. 1-dimensional solutions of the λ-self shrinkers[J]. Geometriae Dedicata, 2017, 189:97-112. doi: 10.1007/s10711-017-0219-z
[6] GUANG Q. Gap and rigidity theorems of λ-hypersurfaces[J]. Proceedings of the American Mathematical Society, 2018, 146:4459-4471. doi: 10.1090/proc/14111
[7] LEI L, XU H W, XU Z Y. A new pinching theorem for complete self-shrinkers and its generalization[J/OL]. arXiv, (2017-12-05)[2020-02-20]. https://arxiv.org/abs/1712.01899.
[8] LI X X, CHANG X F. A rigidity theorem of ξ-submanifolds in C2[J]. Geometriae Dedicata, 2016, 185:155-169. doi: 10.1007/s10711-016-0173-1
[9] ROSS J. On the existence of a closed embedded rotational λ-hypersurface[J]. Journal of Geometry, 2019, 110(2):26/1-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=59632e14f4670d2deb0d81a4acdc7ce1
[10] WANG H, XU H W, ZHAO E T. Gap theorems for complete λ-hypersurfaces[J]. Pacific Journal of Mathema-tics, 2017, 288:453-474. doi: 10.2140/pjm.2017.288.453
[11] 许洪伟, 雷力, 许智源.关于完备λ-超曲面的第二拼挤定理[J].中国科学:数学, 2018, 48(1):245-254. http://www.cnki.com.cn/Article/CJFDTotal-JAXK201801016.htm XU H W, LEI L, XU Z Y. The second pinching theorem for complete λ-hypersurfaces[J]. Scientia Sinica:Mathe-matica, 2018, 48(1):245-254. http://www.cnki.com.cn/Article/CJFDTotal-JAXK201801016.htm
[12] ZHU Y C, FANG Y, CHEN Q. Complete bounded λ-hypersurfaces in the weighted volume-preserving mean curvature flow[J]. Science China Mathematics, 2018, 61(5):929-942. doi: 10.1007/s11425-016-9020-9
[13] LE N Q, SESUM N. Blow-up rate of the mean curvature during the mean curvature flow and a gap theorem for self-shrinkers[J]. Communications in Analysis and Geometry, 2011, 19:1-27. http://cn.bing.com/academic/profile?id=dc585521797143da4785f5ac20cc0652&encoded=0&v=paper_preview&mkt=zh-cn
[14] CAO H D, LI H Z. A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension[J]. Calculus of Variations and Partial Differential Equations, 2013, 46:879-889. doi: 10.1007/s00526-012-0508-1
[15] COLDING T H, MINICOZZI II W P. Generic mean curvature flow I; generic singularities[J]. Annals of Mathema-tics, 2012, 175:755-833. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Arxiv000000124418
计量
- 文章访问数: 568
- HTML全文浏览量: 376
- PDF下载量: 57