The Synthesis of Phenothiazine Derivatives with Mechanofluorochromism Property and the Fluorescence Detection for 2, 4, 6-trinitrophenol
-
摘要: 设计合成了2种具有明显聚集诱导发光(AIE)特性的吩噻嗪衍生物(SPA和SPN).荧光光谱研究表明, 这2种化合物在水溶液中能够特异性地识别2, 4, 6-三硝基苯酚(TNP), 其中SPA荧光检测TNP的猝灭率为89.1%, 猝灭常数Ksv为3.18×104 L/mol, 检出限为8.62×10-7 mol/L; SPN荧光检测TNP的猝灭率为90.4%, 猝灭常数Ksv为4.43×104 L/mol, 检出限为5.00×10-7 mol/L, 有望作为荧光探针特异性识别TNP.而且SPA分子具有可逆的力致荧光变色特性, 在紫外灯下发出蓝色荧光, 研磨后变为浅黄色, 有望被用于防伪材料或者可视化压力传感器领域.
-
关键词:
- 吩噻嗪衍生物 /
- 聚集诱导发光 /
- 荧光检测 /
- 2, 4, 6-三硝基苯酚 /
- 力致荧光变色
Abstract: Two phenothiazine derivatives (SPA and SPN) with significant aggregation-induced emission (AIE) characteristics were designed and synthesized. Photoluminescence spectroscopy showed that these two compounds could specifically recognize TNP in aqueous media. The fiuorescence of SPA was quenched by 89.1% in the presence of TNP with a detection limit as low as 8.62×10-7 mol/L and a high Stern-Volmer quenching constant (Ksv) of 3.18×104 L/mol. The fluorescence of SPN was quenched by 90.4% after addition of TNP with a detection limit as low as 5.00×10-7 mol/L and a high Stern-Volmer quenching constant of 4.43×104 L/mol. It indicated that SPA and SPN were expected to work as fiuorescent probe to detection TNP with high sensitivity and selectivity. Moreover, SPA showed reversible mechanofluorochromic properties. It was observed that SPA emitted strong blue fluorescence under 365 nm UV light and the color changed light yellow after grinding. So it can promisingly be applied to the fields of visual pressure sensors or anti-counterfeiting materials. -
-
-
[1] ZHAO Q A, LI F Y, HUANG C H. Phosphorescent chemosensors based on heavy-metal complexes[J]. Chemical Society Reviews, 2010, 39(8):3007-3030. doi: 10.1039/b915340c
[2] XIANG H F, CHENG J H, MA X F, et al. Near-infrared phosphorescence:materials and applications[J]. Chemical Society Reviews, 2013, 42(14):6128-6185. doi: 10.1039/c3cs60029g
[3] COSTA R D, ORTI E, BOLINK H J. Recent advances in light-emitting electrochemical cells[J]. Pure and Applied Chemistry, 2011, 83(12):2115-2128. doi: 10.1351/PAC-CON-11-07-20
[4] JIA J H, ZHANG Y, XUE P C, et al. Synthesis of dendri-tic triphenylamine derivatives for dye-sensitized solar cellss[J]. Dyes and Pigments, 2013, 96(2):407-413. doi: 10.1016/j.dyepig.2012.09.015
[5] ZHAO Q, HUANG C H, LI F Y. Phosphorescent heavy-metal complexes for bioimaging[J]. Chemical Society Reviews, 2011, 40(5):2508-2524. doi: 10.1039/c0cs00114g
[6] LUO J D, XIE Z L, LAN J W Y, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chemical Communications, 2001, 18:1740-1741. https://pubs.rsc.org/en/content/articlelanding/2001/cc/b105159h
[7] LU Q Y, LI X F, LI J, et al. Influence of cyano groups on the properties of piezofluorochromic aggregation-induced emission enhancement compounds derived from tetraphenylvinyl-capped ethane[J]. Journal of Materials Chemistry C, 2015, 3(6):1225-1234. doi: 10.1039/C4TC02165G
[8] WANG Y, GAO K, LI J, et al. Synthesis and characterization of a Cd compound for selectively sensing of nitro-explosives[J]. Inorganic Chemistry Communications, 2018, 96:189-193. doi: 10.1016/j.inoche.2018.07.039
[9] BAGHERI N, KHATAEE A, HASSANZADEH J, et al. Visual detection of peroxide-based explosives using novel mimetic Ag nanoparticle/ZnMOF nanocomposite[J]. Journal of Hazardous Materials, 2018, 360:233-242. doi: 10.1016/j.jhazmat.2018.08.013
[10] PENG Y, ZHANG A J, DONG M, et al. A colorimetric and fluorescent chemosensor for the detection of an explosive-2, 4, 6-trinitrophenol (TNP) [J]. Chemical Communications, 2011, 47(15):4505-4507. doi: 10.1039/c1cc10400d
[11] WYMAN J F, SERVE M P, HOBSON D W, et al. Acute toxicity, distribution, and metabolism of 2, 4, 6-trinitrophenol (picric acid) in Fischer 344 rats[J]. Journal of Toxicology Environmental Health, 1992, 37(2):313-327. doi: 10.1080/15287399209531672
[12] KOSE M, KIRPIK H, KOSE A. Fluorimetric detections of nitroaromatic explosives by polyaromatic imine conjugates[J]. Journal of Molecular Structure, 2019, 1185:369-378. doi: 10.1016/j.molstruc.2019.03.003
[13] UDHAYAKUMARI D, VELMATHI S, VENKATESAN P, et al. A pyrene-linked thiourea as a chemosensor for cations and simple fluorescent sensor for picric acid[J]. Analytical Methods, 2015, 7(3):1161-1166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=362568a3ebf6604d49bcf1f6ad9d220b
[14] PRAMANIK S, BHALLA V, KUMAR M. Mercury assisted fluorescent supramolecular assembly of hexaphenylbenzene derivative for femtogram detection of picric acid[J]. Analytica Chimica Acta, 2013, 793:99-106. doi: 10.1016/j.aca.2013.07.023
[15] VENKATRAMAIAH N, KUMAR S, PATIL S. Fluoranthene based fluorescent chemosensors for detection of explosive nitroaromatics[J]. Chemical Communications, 2012, 48(41):5007-5009. doi: 10.1039/c2cc31606d
[16] AN Z F, ZHENG C, CHEN R F, et al. Exceptional blueshifted and enhanced aggregation-induced emission of conjugated asymmetric triazines and their applications in superamplified detection of explosives[J]. Chemistry, 2012, 18(49):15655-15661. doi: 10.1002/chem.201202337
[17] SALINAS Y, MARTÍNEZ-MÁÑEZ R, MARCOS M D, et al. Optical chemosensors and reagents to detect explosives[J]. Chemical Society Reviews, 2012, 41(3):1261-1296. doi: 10.1039/C1CS15173H
[18] FENG H T, WANG J H, ZHENG Y S. CH3-π interaction of explosives with cavity of a TPE macrocycle:the key cause for highly selective detection of TNT[J]. ACS Applied Materials Interfaces, 2014, 6(22):20067-20074. doi: 10.1021/am505636f
[19] FUJIYAMA-NOVAK J H, GADDAM C K, DAS D, et al. Detection of explosives by plasma optical emission spectroscopy[J]. Sensors and Actuators B:Chemical, 2013, 176:985-993. doi: 10.1016/j.snb.2012.08.063
[20] ZHANG Z, CHEN S, SHI R, et al. A single molecular fluorescent probe for selective and sensitive detection of nitroaromatic explosives:a new strategy for the mask-free discrimination of TNT and TNP within same sample[J]. Talanta, 2017, 166:228-233. doi: 10.1016/j.talanta.2017.01.046
[21] SUN M, WANG S, YANG Q, et al. A new colorimetric fluorescent sensor for ratiometric detection of cyanide in solution, test strips, and in cells[J]. RSC Advances, 2014, 4(16):8295-8299. doi: 10.1039/c3ra46741d
-
期刊类型引用(0)
其他类型引用(1)