力致变色吩噻嗪衍生物的合成及其对2,4,6-三硝基苯酚的荧光检测

苏弘霖, 杨京莲, 高敏, 温钰旸, 梁楸怡, 郭化雷, 张敏敏, 区振杰, 刘聪, 许炳佳

苏弘霖, 杨京莲, 高敏, 温钰旸, 梁楸怡, 郭化雷, 张敏敏, 区振杰, 刘聪, 许炳佳. 力致变色吩噻嗪衍生物的合成及其对2,4,6-三硝基苯酚的荧光检测[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 50-56. DOI: 10.6054/j.jscnun.2020060
引用本文: 苏弘霖, 杨京莲, 高敏, 温钰旸, 梁楸怡, 郭化雷, 张敏敏, 区振杰, 刘聪, 许炳佳. 力致变色吩噻嗪衍生物的合成及其对2,4,6-三硝基苯酚的荧光检测[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 50-56. DOI: 10.6054/j.jscnun.2020060
SU Honglin, YANG Jinglian, GAO Min, WEN Yuyang, LIANG Qiuyi, GUO Hualei, ZHANG Minmin, OU Zhenjie, LIU Cong, XU Bingjia. The Synthesis of Phenothiazine Derivatives with Mechanofluorochromism Property and the Fluorescence Detection for 2, 4, 6-trinitrophenol[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 50-56. DOI: 10.6054/j.jscnun.2020060
Citation: SU Honglin, YANG Jinglian, GAO Min, WEN Yuyang, LIANG Qiuyi, GUO Hualei, ZHANG Minmin, OU Zhenjie, LIU Cong, XU Bingjia. The Synthesis of Phenothiazine Derivatives with Mechanofluorochromism Property and the Fluorescence Detection for 2, 4, 6-trinitrophenol[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 50-56. DOI: 10.6054/j.jscnun.2020060

力致变色吩噻嗪衍生物的合成及其对2,4,6-三硝基苯酚的荧光检测

基金项目: 

国家自然科学基金项目 51603233

广东省自然科学基金项目 2017A030313318

广东省自然科学基金项目 2019A1515010550

广东省自然科学基金项目 2020A1515010439

2019年广东省大学生创新创业训练计划项目 S201915744138

中山大学光电材料与技术国家重点实验室开放课题 OEMT-2019-KF-08

中山大学光电材料与技术国家重点实验室开放课题 OEMT-2018-KF-11

中山大学聚合物复合材料及功能材料教育部重点实验室开放课题 PCFM-2019-05

详细信息
    通讯作者:

    刘聪, 副教授, Email:liucong_011@163.com

  • 中图分类号: O656.31

The Synthesis of Phenothiazine Derivatives with Mechanofluorochromism Property and the Fluorescence Detection for 2, 4, 6-trinitrophenol

  • 摘要: 设计合成了2种具有明显聚集诱导发光(AIE)特性的吩噻嗪衍生物(SPA和SPN).荧光光谱研究表明, 这2种化合物在水溶液中能够特异性地识别2, 4, 6-三硝基苯酚(TNP), 其中SPA荧光检测TNP的猝灭率为89.1%, 猝灭常数Ksv为3.18×104 L/mol, 检出限为8.62×10-7 mol/L; SPN荧光检测TNP的猝灭率为90.4%, 猝灭常数Ksv为4.43×104 L/mol, 检出限为5.00×10-7 mol/L, 有望作为荧光探针特异性识别TNP.而且SPA分子具有可逆的力致荧光变色特性, 在紫外灯下发出蓝色荧光, 研磨后变为浅黄色, 有望被用于防伪材料或者可视化压力传感器领域.
    Abstract: Two phenothiazine derivatives (SPA and SPN) with significant aggregation-induced emission (AIE) characteristics were designed and synthesized. Photoluminescence spectroscopy showed that these two compounds could specifically recognize TNP in aqueous media. The fiuorescence of SPA was quenched by 89.1% in the presence of TNP with a detection limit as low as 8.62×10-7 mol/L and a high Stern-Volmer quenching constant (Ksv) of 3.18×104 L/mol. The fluorescence of SPN was quenched by 90.4% after addition of TNP with a detection limit as low as 5.00×10-7 mol/L and a high Stern-Volmer quenching constant of 4.43×104 L/mol. It indicated that SPA and SPN were expected to work as fiuorescent probe to detection TNP with high sensitivity and selectivity. Moreover, SPA showed reversible mechanofluorochromic properties. It was observed that SPA emitted strong blue fluorescence under 365 nm UV light and the color changed light yellow after grinding. So it can promisingly be applied to the fields of visual pressure sensors or anti-counterfeiting materials.
  • 图  1   SPA和SPN的合成路线

    Figure  1.   The route of SPA and SPN synthesis

    图  2   SPA在不同φ(H2O)的H2O/THF溶液中的荧光光谱

    注:插图为不同φ(H2O)下的荧光峰强度; SPA的浓度为10-5 mol/L.

    Figure  2.   The fluorescent spectra of SPA in H2O/THF mixture with different φ(H2O)

    图  3   SPN在不同φ(H2O)的H2O/THF溶液中的荧光光谱

    注:插图为不同φ(H2O)下的荧光峰强度; SPA的浓度为10-5 mol/L.

    Figure  3.   The fluorescent spectra of SPN in H2O/THF mixture with different φ(H2O)

    图  4   SPA分子在水溶液中检测不同硝基芳香爆炸物的荧光光谱及荧光淬灭率

    注:c(SPA)=1.0×10-4 mol/L.

    Figure  4.   The fluorescent spectra and the fluorescent quenching rate of SPA in the presence of different nitro explosives in aqueous media

    图  5   含不同浓度TNP的SPA溶液荧光光谱以及峰强度拟合曲线

    Figure  5.   The fluorescent spectra and the peak intensity fitting of SPA solution with the addition of different concentrations of TNP solutions

    图  6   SPN分子在水溶液中检测不同硝基芳香爆炸物的荧光光谱及荧光淬灭率

    注:c(SPN)=1.0×10-4 mol/L.

    Figure  6.   The fluorescent spectra and the fluorescent quenching rate of SPN in the presence of different nitro explosives in aqueous media

    图  7   向XPA溶液中滴加不同浓度TNP溶液后的荧光强度变化及峰强度线性拟合

    Figure  7.   The fluorescent spectra and the peak intensity fitting of SPA solution with the addition of different concentrations of TNP solutions

    图  8   2次研磨和熏蒸后的SPA粉末的荧光光谱

    Figure  8.   The fluorescent spectra of SPA after 2 times of grinding and fumigating

    图  9   2次研磨和熏蒸后的SPA的XRD谱

    Figure  9.   The XRD patterns of SPA after 2 times of grinding and fumigating

    图  10   2次研磨和熏蒸后SPA的DSC曲线

    Figure  10.   The DSC curves of SPA after 2 times of grinding and fumigating

  • [1]

    ZHAO Q A, LI F Y, HUANG C H. Phosphorescent chemosensors based on heavy-metal complexes[J]. Chemical Society Reviews, 2010, 39(8):3007-3030. doi: 10.1039/b915340c

    [2]

    XIANG H F, CHENG J H, MA X F, et al. Near-infrared phosphorescence:materials and applications[J]. Chemical Society Reviews, 2013, 42(14):6128-6185. doi: 10.1039/c3cs60029g

    [3]

    COSTA R D, ORTI E, BOLINK H J. Recent advances in light-emitting electrochemical cells[J]. Pure and Applied Chemistry, 2011, 83(12):2115-2128. doi: 10.1351/PAC-CON-11-07-20

    [4]

    JIA J H, ZHANG Y, XUE P C, et al. Synthesis of dendri-tic triphenylamine derivatives for dye-sensitized solar cellss[J]. Dyes and Pigments, 2013, 96(2):407-413. doi: 10.1016/j.dyepig.2012.09.015

    [5]

    ZHAO Q, HUANG C H, LI F Y. Phosphorescent heavy-metal complexes for bioimaging[J]. Chemical Society Reviews, 2011, 40(5):2508-2524. doi: 10.1039/c0cs00114g

    [6]

    LUO J D, XIE Z L, LAN J W Y, et al. Aggregation-induced emission of 1-methyl-1, 2, 3, 4, 5-pentaphenylsilole[J]. Chemical Communications, 2001, 18:1740-1741. https://pubs.rsc.org/en/content/articlelanding/2001/cc/b105159h

    [7]

    LU Q Y, LI X F, LI J, et al. Influence of cyano groups on the properties of piezofluorochromic aggregation-induced emission enhancement compounds derived from tetraphenylvinyl-capped ethane[J]. Journal of Materials Chemistry C, 2015, 3(6):1225-1234. doi: 10.1039/C4TC02165G

    [8]

    WANG Y, GAO K, LI J, et al. Synthesis and characterization of a Cd compound for selectively sensing of nitro-explosives[J]. Inorganic Chemistry Communications, 2018, 96:189-193. doi: 10.1016/j.inoche.2018.07.039

    [9]

    BAGHERI N, KHATAEE A, HASSANZADEH J, et al. Visual detection of peroxide-based explosives using novel mimetic Ag nanoparticle/ZnMOF nanocomposite[J]. Journal of Hazardous Materials, 2018, 360:233-242. doi: 10.1016/j.jhazmat.2018.08.013

    [10]

    PENG Y, ZHANG A J, DONG M, et al. A colorimetric and fluorescent chemosensor for the detection of an explosive-2, 4, 6-trinitrophenol (TNP) [J]. Chemical Communications, 2011, 47(15):4505-4507. doi: 10.1039/c1cc10400d

    [11]

    WYMAN J F, SERVE M P, HOBSON D W, et al. Acute toxicity, distribution, and metabolism of 2, 4, 6-trinitrophenol (picric acid) in Fischer 344 rats[J]. Journal of Toxicology Environmental Health, 1992, 37(2):313-327. doi: 10.1080/15287399209531672

    [12]

    KOSE M, KIRPIK H, KOSE A. Fluorimetric detections of nitroaromatic explosives by polyaromatic imine conjugates[J]. Journal of Molecular Structure, 2019, 1185:369-378. doi: 10.1016/j.molstruc.2019.03.003

    [13]

    UDHAYAKUMARI D, VELMATHI S, VENKATESAN P, et al. A pyrene-linked thiourea as a chemosensor for cations and simple fluorescent sensor for picric acid[J]. Analytical Methods, 2015, 7(3):1161-1166. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=362568a3ebf6604d49bcf1f6ad9d220b

    [14]

    PRAMANIK S, BHALLA V, KUMAR M. Mercury assisted fluorescent supramolecular assembly of hexaphenylbenzene derivative for femtogram detection of picric acid[J]. Analytica Chimica Acta, 2013, 793:99-106. doi: 10.1016/j.aca.2013.07.023

    [15]

    VENKATRAMAIAH N, KUMAR S, PATIL S. Fluoranthene based fluorescent chemosensors for detection of explosive nitroaromatics[J]. Chemical Communications, 2012, 48(41):5007-5009. doi: 10.1039/c2cc31606d

    [16]

    AN Z F, ZHENG C, CHEN R F, et al. Exceptional blueshifted and enhanced aggregation-induced emission of conjugated asymmetric triazines and their applications in superamplified detection of explosives[J]. Chemistry, 2012, 18(49):15655-15661. doi: 10.1002/chem.201202337

    [17]

    SALINAS Y, MARTÍNEZ-MÁÑEZ R, MARCOS M D, et al. Optical chemosensors and reagents to detect explosives[J]. Chemical Society Reviews, 2012, 41(3):1261-1296. doi: 10.1039/C1CS15173H

    [18]

    FENG H T, WANG J H, ZHENG Y S. CH3-π interaction of explosives with cavity of a TPE macrocycle:the key cause for highly selective detection of TNT[J]. ACS Applied Materials Interfaces, 2014, 6(22):20067-20074. doi: 10.1021/am505636f

    [19]

    FUJIYAMA-NOVAK J H, GADDAM C K, DAS D, et al. Detection of explosives by plasma optical emission spectroscopy[J]. Sensors and Actuators B:Chemical, 2013, 176:985-993. doi: 10.1016/j.snb.2012.08.063

    [20]

    ZHANG Z, CHEN S, SHI R, et al. A single molecular fluorescent probe for selective and sensitive detection of nitroaromatic explosives:a new strategy for the mask-free discrimination of TNT and TNP within same sample[J]. Talanta, 2017, 166:228-233. doi: 10.1016/j.talanta.2017.01.046

    [21]

    SUN M, WANG S, YANG Q, et al. A new colorimetric fluorescent sensor for ratiometric detection of cyanide in solution, test strips, and in cells[J]. RSC Advances, 2014, 4(16):8295-8299. doi: 10.1039/c3ra46741d

  • 期刊类型引用(0)

    其他类型引用(1)

图(10)
计量
  • 文章访问数:  920
  • HTML全文浏览量:  535
  • PDF下载量:  59
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-10-05
  • 网络出版日期:  2021-03-21
  • 刊出日期:  2020-08-24

目录

    /

    返回文章
    返回