Processing math: 4%

数据驱动下的个性化自适应学习研究综述

朱佳, 张丽君, 梁婉莹

朱佳, 张丽君, 梁婉莹. 数据驱动下的个性化自适应学习研究综述[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 17-25. DOI: 10.6054/j.jscnun.2020055
引用本文: 朱佳, 张丽君, 梁婉莹. 数据驱动下的个性化自适应学习研究综述[J]. 华南师范大学学报(自然科学版), 2020, 52(4): 17-25. DOI: 10.6054/j.jscnun.2020055
ZHU Jia, ZHANG Lijun, LIANG Wanying. A Review of Data-Driven Personalized Adaptive Learning[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 17-25. DOI: 10.6054/j.jscnun.2020055
Citation: ZHU Jia, ZHANG Lijun, LIANG Wanying. A Review of Data-Driven Personalized Adaptive Learning[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(4): 17-25. DOI: 10.6054/j.jscnun.2020055

数据驱动下的个性化自适应学习研究综述

基金项目: 

国家自然科学基金项目 61877020

国家自然科学基金项目 U1811263

广州市大数据智能教育重点实验室 201905010009

详细信息
    通讯作者:

    朱佳,教授,Email:jzhu@m.scnu.edu.cn

  • 中图分类号: TP18;G434

A Review of Data-Driven Personalized Adaptive Learning

  • 摘要: 智能教育环境下的教学更加关注学习者的个性化诉求,而自适应学习能够为实现个性化教育提供技术和方法支持.文章从数据驱动的视角出发,通过开展国内外个性化自适应学习研究的综述分析,对其系统框架和相关组件进行阐述和解读.其中,重点从领域知识模型、学习者特征模型和教学模型三方面对其实现机制进行探析,提出当前研究存在的问题和不足,并在此基础上介绍了近年来可促进解释性提升的相关组件技术研究,奠定进一步深入个性化自适应学习研究的基础.
    Abstract: Teaching in a smart education environment pays more attention to the individual demands of learners, and adaptive learning can provide technical and methodological support for achieving personalized education. A review of the domestic and foreign research on personalized adaptive learning research is conducted to interpret its system framework and related components. Its implementation mechanism is given at three aspects, i.e., the domain knowledge model, the learner characteristic model, and the teaching model. After a comprehensive analysis, the problems and deficiencies of current research are pointed out. On that basis, the research on related component technologies in recent years that can promote interpretability is introduced to provide references for the next step of personalized adaptive learning research.
  • 分数阶导数具有非局部性, 相比整数阶导数,它能更精确地描述现实世界中具有记忆和遗传性质的问题.因此,分数阶微分方程已被广泛应用于众多领域,如半导体物理、弹性力学、生物学异速生长、金融学期权定价、信号处理和分形理论等[1-2].但分数阶导数的非局部性使得这类方程难以获得解析解, 或者解析解需要用特殊函数来表达, 这不利于实际应用.所以, 研究其数值解显得尤为重要.

    本文研究如下时间分数阶次扩散方程的初边值问题:

    {C0Dαtu(x,t)=μxxu(x,t)+f(x,t)((x,t)[0,1]×(0,T]),u(x,0)=u0(x)(x[0,1]),u(0,t)=u(1,t)=0(t(0,T]), (1)

    其中, 0 < α < 1, μ>0, 0CDtα是Caputo分数阶微分算子, 其定义为

    C0Dαtu(x,t)=1Γ(1α)t0(ts)αsu(x,s)ds,

    这里

    Γ(·)表示Gamma函数.

    时间分数阶次扩散方程是一类重要的数学模型,常被用于描述运输中的反常扩散行为,能很好地刻画长时记忆的流通过程.已有很多学者研究了有关时间分数阶次扩散方程的数值方法[3-12],如:给出了一种隐式差分格式, 讨论了格式的收敛阶,证明了该格式无条件稳定[3];研究了二维问题的一种高阶紧致差分格式[5];给出了一种有限元方法,并证明了所得全离散格式具有超收敛性[4];给出了一种时间方向具有二阶收敛阶的有限元计算格式,证明了该格式无条件稳定且空间方向具有最优收敛阶[6];利用经典有限元方法讨论了时间分数阶对流扩散方程和电报方程的数值解[7-8];给出了一种最小二乘谱方法[9];运用时空谱方法讨论了方程(1)的数值解,并获得了先验误差估计[10].

    但上述方法并未涉及全离散所得线性方程组的快速求解问题.事实上,对于大尺度、高精度的实际问题而言,全离散格式将导出一个大规模的线性方程组,而求解该方程组需要消耗巨大的计算量.

    为了高效求解全离散所得线性方程组,本文研究了方程(1)的一种多尺度快速方法.首先,基于时间方向采用L1逼近和空间方向采用多尺度Galerkin逼近建立全离散格式,给出了全离散格式的误差估计;然后,利用矩阵分裂策略设计快速求解该全离散格式的多层扩充算法, 并证明了该算法具有最优收敛阶.

    本节介绍一些相关记号和引理, 以方便后文引用.没有特别说明, 后文中出现的字母c表示与时间和空间步长无关的常数, 不同的位置可能表示不一样的常数.

    I=(a, b), (·, ·)和‖·‖0分别表示空间L2(I)上的内积和范数. H01(I)是满足零边界条件的函数构成的Sobolev空间, 配备内积及其相应的范数如下:

    u,v1:=Iu(x)v(x)dx,

    XnH01(I)的有限维子空间, 其元素是以a+\frac{b-a}{2^{n}}(j=1, 2, …, 2n-1)为节点的次数不超过r的分片多项式.则易知, 序列{Xn}是嵌套的, 即XnXn+1(n \in \mathbb{N}).于是,Xn具有如下多尺度分解:

    {X_n} = {X_{n - 1}}{ \oplus ^ \bot }{W_n} = {X_0}{ \oplus ^ \bot }{W_1}{ \oplus ^ \bot }{W_2}{ \oplus ^ \bot } \cdots { \oplus ^ \bot }{W_n},

    其中,WnXn-1Xn中的正交补空间, 此处正交指的是在内积〈·,·〉1意义下.定义正交投影算子(Ritz投影)\mathcal{P}n:H01(I)→Xn如下:

    {\langle u - {\mathcal{P}_n}u,v\rangle _1} = ({\partial _x}(u - {\mathcal{P}_n}u),{\partial _x}v) = 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (u{\kern 1pt} \in {\kern 1pt} H_0^1(I),v{\kern 1pt} \in {\kern 1pt} {X_n}).

    引理1[5]  设m, r, r≥1是正整数, uHm(I)∩H01(I).如果1≤mr+1, 则

    {\left\| {{\kern 1pt} u - {\mathcal{P}_n}u{\kern 1pt} } \right\|_p} \le c{2^{ - (m - p)n}}{\left\| {{\kern 1pt} u{\kern 1pt} } \right\|_m}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (p = 0,1).

    本节给出时间分数阶次扩散方程(1)的L1-多尺度Galerkin全离散格式, 并推导其误差估计.

    τ为时间步长, 记tk=kτ(k=0, 1, …, NT; NTτ=T), uk:= u(·, tk).定义离散算子

    D_\tau ^\alpha {u^k} = \frac{{{\tau ^{ - \alpha }}}}{{\Gamma (1 - \alpha )}}\left[ {{u^k} - \sum\limits_{j = 1}^{k - 1} {({a_{k - j - 1}} - {a_{k - j}})} {u^k} - {a_{k - 1}}{u^0}} \right],

    其中, aj=(j+1)1-α-j1-α (j≥0).根据文献[2], 如果uC2([0, T]; L2(I)), 则用Dταuk逼近分数阶导数0CDαtku的截断误差为:

    {\left\| {{\kern 1pt} _0^{\rm{C}}D_{{t_k}}^\alpha u - D_\tau ^\alpha {u^k}{\kern 1pt} } \right\|_0} \le c{\tau ^{2 - \alpha }}. (2)

    取多尺度空间Xn作为空间方向的逼近子空间, 结合上述记号, 得到L1-多尺度Galerkin全离散格式:对每个时间层t=tk(k=1, 2, …, NT), 求unkXn, 使得

    \left\{ {\begin{array}{*{20}{l}} {(D_\tau ^\alpha u_n^k,{v_n}) + \mu ({\partial _x}u_n^k,{\partial _x}{v_n}) = ({f^k},{v_n}){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} ({v_n}{\kern 1pt} \in {\kern 1pt} {X_n}),}\\ {u_n^0 = {\mathcal{P}_n}{u_0},} \end{array}} \right. (3)

    其中, fk=f(x, tk).

    定理1  对每个时间层t=tk (k=1, 2, …, NT), 全离散格式(3)都存在唯一解unk.如果问题(1)的解析解uC2([0, T]; Hr(I)∩H01(I)), 0CDtαuHr-2(I), 且u0Hr(I), 则全离散格式具有如下误差估计

    {\left\| {{\kern 1pt} {u^k} - u_n^k{\kern 1pt} } \right\|_0} \le c({2^{ - nr}} + {\tau ^{2 - \alpha }})\quad (1 \le k \le {N_T}). (4)

    证明  先证解的存在唯一性.为此, 只需要考虑对应的齐次方程只有零解.根据离散导数Dτα的定义可知, 方程(3)对应的齐次方程为

    (u_n^k,{v_n}) + \mu ({\partial _x}u_n^k,{\partial _x}{v_n}) = 0\quad ({v_n}{\kern 1pt} \in {\kern 1pt} {X_n}).

    vn=unk, 则

    0 = (u_n^k,u_n^k) + \mu ({\partial _x}u_n^k,{\partial _x}u_n^k) = \left\| {{\kern 1pt} u_n^k{\kern 1pt} } \right\|_0^2 + \left\| {{\kern 1pt} \mu u_n^k{\kern 1pt} } \right\|_1^2, (5)

    从而unk=0.解的存在唯一性获证.

    接下来论证误差估计.由方程(1)可知, 真解uk满足方程

    \begin{array}{l} (D_\tau ^\alpha {u^k},{v_n}) + \mu ({\partial _x}{u^k},{\partial _x}{v_n}) = \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} ({f^k},{v_n}) + (D_\tau ^\alpha {u^k} - _0^{\rm{C}}D_{{t_k}}^\alpha u,{v_n}). \end{array} (6)

    enk=\mathcal{P}nuk-unk (k=0, 1, 2, …, NT).将方程(6)减方程(3), 并取vn=enk,则enk满足方程

    \begin{array}{l} (D_\tau ^\alpha e_n^k,e_n^k) + \mu ({\partial _x}e_n^k,{\partial _x}e_n^k) = \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (D_\tau ^\alpha ({\mathcal{P}_n}{u^k} - {u^k}),e_n^k) - (D_\tau ^\alpha {u^k} - _0^{\rm{C}}D_{{t_k}}^\alpha u,e_n^k). \end{array} (7)

    由于1=a0>a1>a2>…>an>0, 则由Cauchy-Schwarz不等式、三角不等式及引理2, 有

    \begin{array}{l} (D_\tau ^\alpha e_n^k,e_n^k) = \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{{\tau ^{ - \alpha }}}}{{\Gamma (2 - \alpha )}}\left( {e_n^k - \sum\limits_{i = 1}^{k - 1} {({a_{k - i - 1}} - {a_{k - i}})} e_n^i - {a_{k - 1}}e_n^0,e_n^k} \right) \ge \\ {\kern 1pt} \left. \begin{array}{l} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{{\tau ^{ - \alpha }}}}{{\Gamma (2 - \alpha )}}\left\| {e_n^k} \right\|_0^2 - \left( {\sum\limits_{i = 1}^{k - 1} {\left( {({a_{k - i - 1}} - {a_{k - i}})} \right. \times } } \right.\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left. {\frac{{\left\| {e_n^i} \right\|_0^2 + \left\| {e_n^k} \right\|_0^2}}{2}} \right) - {a_{k - 1}}\frac{{\left\| {e_n^0} \right\|_0^2 + \left\| {e_n^k} \right\|_0^2}}{2} \end{array} \right) = \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \frac{{{\tau ^{ - \alpha }}}}{{\Gamma (2 - \alpha )}}\left( {\left\| {e_n^k} \right\|_0^2 - \sum\limits_{i = 1}^{k - 1} {({a_{k - i - 1}} - {a_{k - i}})} \left\| {e_n^i} \right\|_0^2 - } \right.\\ {\kern 1pt} \left. {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {a_{k - 1}}\left\| {e_n^0} \right\|_0^2} \right), \end{array}
    \begin{array}{l} \begin{array}{*{20}{l}} {(D_\tau ^\alpha ({\mathcal{P}_n}{u^k} - {u^k}),e_n^k)| = }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left| {(D_\tau ^\alpha {\mathcal{P}_n}{u^k} - _0^{\rm{C}}D_{{t_k}}^\alpha {\mathcal{P}_n}u + _0^{\rm{C}}D_{{t_k}}^\alpha {\mathcal{P}_n}u - _0^{\rm{C}}D_{{t_k}}^\alpha u + _0^{\rm{C}}D_{{t_k}}^\alpha u - } \right.}\\ {\left. {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} D_\tau ^\alpha {u^k},e_n^k)} \right| \le ({{\left\| {D_\tau ^\alpha {\mathcal{P}_n}{u^k} - _0^{\rm{C}}D_{{t_k}}^\alpha {\mathcal{P}_n}u} \right\|}_0} + } \end{array}\\ \begin{array}{*{20}{l}} {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {{\left\| {_0^{\rm{C}}D_{{t_k}}^\alpha {\mathcal{P}_n}u - _0^{\rm{C}}D_{{t_k}}^\alpha u} \right\|}_0} + {{\left\| {_0^{\rm{C}}D_{{t_k}}^\alpha u - D_\tau ^\alpha {u^k}} \right\|}_0}){{\left\| {{\kern 1pt} e_n^k{\kern 1pt} } \right\|}_0} \le }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (c{\tau ^{2 - \alpha }} + c{2^{ - nr}}){{\left\| {{\kern 1pt} e_n^k{\kern 1pt} } \right\|}_0} \le {{(c{\tau ^{2 - \alpha }} + c{2^{ - nr}})}^2} + \frac{1}{2}\left\| {{\kern 1pt} e_n^k{\kern 1pt} } \right\|_0^2.} \end{array} \end{array}

    再注意到式(7)左端第二项非负, 则有

    \begin{array}{*{20}{l}} {\left( {\frac{{{\tau ^{2 - \alpha }}}}{{\Gamma (2 - \alpha )}} - \frac{1}{2}} \right)\left\| {{\kern 1pt} e_n^k{\kern 1pt} } \right\|_0^2 \le }\\ {\quad c{{({\tau ^{2 - \alpha }} + {2^{ - nr}})}^2} + \sum\limits_{k = 1}^{k - 1} {({a_{k - i - 1}} - {a_{k - i}})} \left\| {{\kern 1pt} e_n^i{\kern 1pt} } \right\|_0^2 + {a_{k - 1}}\left\| {{\kern 1pt} e_n^0{\kern 1pt} } \right\|_0^2,} \end{array}

    适当选取步长τ, 使得\frac{\tau^{2-\alpha}}{\Gamma(2-\alpha)}-\frac{1}{2}>0, 由Gronwall's不等式, 有

    {\left\| {{\kern 1pt} e_n^k{\kern 1pt} } \right\|_0} \le c({\tau ^{2 - \alpha }} + {2^{ - nr}}).

    从而由三角不等式及引理2,有

    {\left\| {{\kern 1pt} {u^k} - u_n^k{\kern 1pt} } \right\|_0} \le {\left\| {{\kern 1pt} {u^k} - {\mathcal{P}_n}{u^k}{\kern 1pt} } \right\|_0} + {\left\| {{\kern 1pt} e_n^k{\kern 1pt} } \right\|_0} \le c({\tau ^{2 - \alpha }} + {2^{ - nr}}).

    证毕.

    注1  当取vn=Dατenk时, 可类似地证明全离散格式的H1收敛阶为

    {\left\| {{\kern 1pt} {u^k} - u_n^k{\kern 1pt} } \right\|_1} \le c({\tau ^{2 - \alpha }} + {2^{ - n(r - 1)}}).

    基底的多尺度特性使得全离散格式(3)对应的线性方程组的系数矩阵具有高低频层次结构, 因此, 本文利用多层扩充法进行高效求解.为了方便叙述, 先将全离散格式改写成:

    \begin{array}{*{20}{l}} {({\partial _x}u_n^k,{\partial _x}v) + \lambda (u_n^k,v) = }\\ {\quad \left( {\lambda \left( {\sum\limits_{j = 1}^{k - 1} {({a_{k - j - 1}} - {a_{k - j}})} u_n^j + {a_{k - 1}}u_n^0} \right) + {f^k},v} \right),} \end{array} (8)

    其中,\lambda:=\frac{\tau^{-\alpha}}{\mu \Gamma(1-\alpha)}un0=\mathcal{P}nu0.记Zn={0, 1, 2, …, n-1},w(i)表示空间Wi的维数, 指标集Jn:= {(i, j):jZw(i), iZn}.在t=tk处, 将unk=\sum\limits_{(i, j) \in J_{n}}cijkwij(x)代入式(8), 得矩阵形式的线性方程组

    ({\mathit{\boldsymbol{E}}_n} + {\mathit{\boldsymbol{K}}_n})\mathit{\boldsymbol{C}}_n^k = \mathit{\boldsymbol{F}}_n^k, (9)

    其中,En=[(w′ij, w′i′j′):(i, j), (i′, j′)∈Jn], Kn=λ[(wij, wi′j′):(i, j), (i′, j′) ∈Jn], Cnk=[cijk]Τ(i, j)∈Jn, Fnk=λ(\sum\limits_{j=1}^{k-1}(ak-j-1-ak-j)Cnj+ak-1Cn0)+[(fk, wij)]Τ(i, j)∈Jn.由基底的正交性可知En是单位矩阵.

    为使用多层扩充算法, 先将Kn进行分块.对m0, p, p′∈\mathbb{N}_{+}, 记

    {\mathit{\boldsymbol{K}}_{0,0}^{{m_0}}: = {\mathit{\boldsymbol{K}}_{{m_0}}},\mathit{\boldsymbol{K}}_{{p^\prime },p}^{{m_0}}: = {\mathit{\boldsymbol{K}}_{{m_0} + {p^\prime },{m_0} + p}},}
    {\mathit{\boldsymbol{K}}_{0,p}^{{m_0}}: = [{\mathit{\boldsymbol{K}}_{i_1^\prime ,i}}:{i^\prime } \in {Z_{{m_0} + 1}},i = {m_0} + p],}
    {\mathit{\boldsymbol{K}}_{p,0}^{{m_0}}: = [{\mathit{\boldsymbol{K}}_{{i^\prime },i}}:{i^\prime } = {m_0} + p,i \in {Z_{{m_0} + 1}}],}

    于是, 当n=m0+m时, Kn可表示为分块矩阵Km0+m=[Ki′, im0:i′, iZm+1].根据矩阵高低频层次特点, 把Km0+m分解成2个矩阵之和, 即

    {\mathit{\boldsymbol{K}}_{{m_0} + m}} = \mathit{\boldsymbol{K}}_{{m_0},m}^L + \mathit{\boldsymbol{K}}_{{m_0},m}^H,

    其中

    \mathit{\boldsymbol{K}}_{{m_0},m}^L: = \left[ {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{K}}_{0,0}^{{m_0}}}&{\mathit{\boldsymbol{K}}_{0,1}^{{m_0}}}& \cdots &{\mathit{\boldsymbol{K}}_{0,m}^{{m_0}}}\\ \mathit{\boldsymbol{0}}&\mathit{\boldsymbol{0}}& \cdots &\mathit{\boldsymbol{0}}\\ \vdots & \vdots &{}& \vdots \\ \mathit{\boldsymbol{0}}&\mathit{\boldsymbol{0}}& \cdots &\mathit{\boldsymbol{0}} \end{array}} \right],
    \mathit{\boldsymbol{K}}_{{m_0},m}^H: = \left[ {\begin{array}{*{20}{c}} \mathit{\boldsymbol{0}}&\mathit{\boldsymbol{0}}& \cdots &\mathit{\boldsymbol{0}}\\ {\mathit{\boldsymbol{K}}_{1,0}^{{m_0}}}&{\mathit{\boldsymbol{K}}_{1,1}^{{m_0}}}& \cdots &{\mathit{\boldsymbol{K}}_{1,m}^{{m_0}}}\\ \vdots & \vdots &{}& \vdots \\ {\mathit{\boldsymbol{K}}_{m,0}^{{m_0}}}&{\mathit{\boldsymbol{K}}_{m,1}^{{m_0}}}& \cdots &{\mathit{\boldsymbol{K}}_{m,m}^{{m_0}}} \end{array}} \right].

    m0m是2个固定的正整数, m0 < <n,则多层扩充算法可描述为:

    算法1  求解线性方程组(8)的多层扩充算法

    Step 1.对n=m0, 解方程(Em0+Km0)Ckm0= Fkm0, 得到Ckm0.

    Step 2.令Ckm0, 0:=Ckm0l=1.执行以下步骤:

    Step 2.1  分别将KLm0, l-1KHm0, l-1扩充为KLm0, lKHm0, l;

    Step 2.2  将Ckm0, l-1扩充为{\mathit{\boldsymbol{\bar C}}_{{m_0}, l}}: = \left[{\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{C}}_{{m_0}, l - 1}}}\\ \mathit{\boldsymbol{0}} \end{array}} \right];

    Step 2.3  解方程(Em0+l+KLm0, l)Ckm0, l=fkm0+l+KHm0, lCm0, l, 获得Ckm0, lRx(m0+l).

    Step 3.令l=l+1, 返回执行Step 2.1, 直到l=m,从而得到多层扩充解ukm0, m=\sum\limits_{(i, j) \in J_{n}} C_{i j}^{k} w_{i j}.

    该算法先在一个维数较低的初始层上求得一个较粗的近似解, 然后逐层扩充, 每次扩充只需要解一个系数矩阵(Em0+K0, 0m0)相同而仅右端项不同的低维线性方程组, 获得解的低频部分, 而高频部分通过矩阵向量乘积获得.由此可见, 该算法比直接在高维逼近子空间上解线性方程组要简单高效.文献[13-15]证明了多层扩充解ukm0, m与直接求解线性方程组得到的解ukm0+m有相同的收敛阶, 即保持最优收敛阶:

    {\left\| {{\kern 1pt} u_{{m_0},m}^k - {u^k}{\kern 1pt} } \right\|_p} \le c({\tau ^{2 - \alpha }} + {2^{ - ({m_0} + m)(r - p)}})\quad (p = 0,1).

    本节以数值算例来验证本文的理论估计和算法1的计算效果.考虑方程(1),其中

    \begin{array}{*{20}{c}} {{u_0}(x) = 2{\rm{sin}}(2\pi x),}\\ {f(x,t) = \left[ {\frac{{\Gamma (3 + \alpha )}}{2}{t^2} + \frac{{{t^{1 - \alpha }}}}{{\Gamma (2 - \alpha )}} + 4{\pi ^2}({t^{2 + \alpha }} + t + 2)} \right]{\rm{sin}}(2\pi x),} \end{array}

    其真解u=(tα+2+t+2)sin(2πx).

    为验证算法1的时间收敛阶, 选取二次多尺度正交基(基底具体构造可参看文献[14]), 并在多层扩充求解时取(m0, m)=(2, 5), 时间步长τ分别取为1/4、1/8、1/16、1/32、1/64、1/128, 对不同的α进行测试.由所得结果(图 1)可以看到:数值结果与理论的时间收敛阶2-α相吻合.

    图  1  u2, 5(x, t)在t=1时刻的时间收敛阶
    Figure  1.  The temporal convergence order of u2, 5(x, t) at t=1

    在空间方向, 分别取线性基底和二次基底进行数值计算, 用算法1时,初始层m0分别取为4和2, m表示扩充的层数, x(n)表示相应逼近子空间的维数, n=m0+m.收敛阶为:

    {\rm{order}} = {\rm{lo}}{{\rm{g}}_2}\frac{{{{\left\| {u - {u_{{m_0},m}}} \right\|}_p}}}{{{{\left\| {u - {u_{{m_0},m + 1}}} \right\|}_p}}},

    这里p可取1和0, 分别对应H1L2范数.对于线性和二次基底, 其H1范数的理论收敛阶分别为1和2;其L2范数的理论收敛阶分别为2和3.由表 1表 2可以看到:算法1所得的数值结果与理论收敛阶非常吻合.

    表  1  线性基底的数值结果
    Table  1.  The numerical results for linear basis
    m x(n) p=1 p=0 条件数
    u-u4, m1 Order u-u4, m0 Order
    0 15 2.009 5e+00 3.925 7e-02 1.216 4
    1 31 1.006 7e+00 0.997 2 9.823 9e-03 1.998 6 1.217 6
    2 63 5.035 8e-01 0.999 3 2.457 4e-03 1.999 2 1.217 9
    3 127 2.518 2e-01 0.999 8 6.143 7e-04 1.999 9 1.217 9
    4 255 1.259 1e-01 1.000 0 1.535 3e-04 2.000 6 1.217 9
    5 511 6.295 7e-02 1.000 0 3.831 5e-05 2.002 5 1.218 0
    6 1 023 3.147 8e-02 1.000 0 9.509 9e-06 2.010 4 1.218 0
    7 2 047 1.573 9e-02 1.000 0 2.316 5e-06 2.037 5 1.218 0
    下载: 导出CSV 
    | 显示表格

    利用Matlab中的Cond命令, 计算了系数矩阵En+Kn的条件数, 从表 1表 2可知条件数一致有界.

    表  2  二次基底的数值结果
    Table  2.  The numerical results for quadratic basis
    m x(n) p=1 p=0 条件数
    u-u2, m1 Order u-u2, m0 Order
    0 7 1.577 5e+00 6.062 9e-02 1.215 1
    1 15 4.049 8e-01 1.961 7 7.804 1e-03 2.957 7 1.217 4
    2 31 1.019 1e-01 1.990 5 9.825 6e-04 2.989 6 1.217 8
    3 63 2.552 0e-02 1.997 6 1.230 5e-04 2.997 4 1.217 9
    4 127 6.382 6e-03 1.999 4 1.539 5e-05 2.998 7 1.217 9
    5 255 1.595 8e-03 1.999 9 1.990 7e-06 2.951 1 1.218 0
    下载: 导出CSV 
    | 显示表格

    在计算效率方面, 对比算法1与Gauss迭代法在线性基底下的数值结果.由对比结果(图 2)可知:算法1具有更高的效率, 而且问题规模越大, 其计算优势越明显.

    图  2  算法1与Gauss迭代法的计算时间对比
    Figure  2.  The comparison of computational time between algorithm 1 and the Gauss iteration method

    本文利用L1-多尺度Galerkin方法离散时间分数阶次扩散方程, 对所得全离散格式建立了多层扩充算法, 理论分析和数值算例证明了该算法具有最优收敛阶,提高了求解效率.对于含有非线性源项f(u, t)的非线性时间分数阶次扩散方程,可先用f(unk-1, t)来逼近f(unk, t),以将问题线性化,然后利用多层扩充算法快速求解.此外, 对时间分数阶导数, 若能用更高效的方法来离散(比如SOE法[13]), 或者用更高阶的逼近格式, 将有助于进一步提高时间分数阶次扩散方程的求解效率.

  • 图  1   个性化自适应学习基本框架

    Figure  1.   The basic framework of personalized adaptive learning

    图  2   个性化自适应学习框架的相关组件及对应关键技术

    Figure  2.   The related components and the key technologies of the personalized adaptive learning framework

  • [1] 菅保霞, 姜强, 赵蔚, 等.大数据背景下自适应学习个性特征模型研究——基于元分析视角[J].远程教育杂志, 2017, 35(4):87-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672643087

    JIAN B X, JIANG Q, ZHAO W, et al. Research on stu-dents' personality traits modeling in adaptive learning on the background of big data:based on the perspective of meta-analysis[J]. Journal of Distance Education, 2017, 35(4):87-96. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672643087

    [2] 祝智庭, 沈德梅.基于大数据的教育技术研究新范式[J].电化教育研究, 2013(10):5-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201310001
    [3] 何克抗.大数据面面观[J].电化教育研究, 2014(10):12-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201410002
    [4] 教育部.教育部关于印发《教育信息化"十三五"规划》的通知[EB/OL]. (2016-06-07)[2020-05-16]. http://www.moe.edu.cn/srcsite/A16/s3342/201606/t20160622_269367.html.
    [5] 教育部.教育部关于印发《教育信息化2.0行动计划》的通知[EB/OL]. (2018-04-13)[2020-05-16]. http://www.moe.gov.cn/srcsite/A16/s3342/201804/t20180425_334188.html.
    [6] 国务院.国务院关于印发新一代人工智能发展规划的通知[EB/OL]. (2017-07-20)[2020-05-16]. http://www.gov.cn/zhengce/content/2017-07/20/content_5211996.htm
    [7] 刘和海, 潘阳. "以学习者为中心":赋权理论视角下的个性化学习实践逻辑[J].中国电化教育, 2018(8):100-106.

    LIU H H, PAN Y. "Students as the center":personalized learning practice logic from the perspective of empowerment theory[J]. China Educational Technology, 2018(8):100-106.

    [8] 郭朝晖, 王楠, 刘建设.国内外自适应学习平台的现状分析研究[J].电化教育研究, 2016(4):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201604008

    GUO Z H, WANG N, LIU J S. Analysis of the current research status of adaptive learning platforms[J]. e-Education Research, 2016(4):55-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201604008

    [9]

    Educause. Key Issues in teaching and learning 2016[DB/OL]. (2016-02-05)[2020-05-06]. http://www.educause.edu/eli/initiatives/key-issues-in-teaching-and-learning.

    [10]

    CHAPLOT D S, RHIM E, KIM J. Personalized adaptive learning using neural networks[C]//Proceedings of the 3rd ACM Conference on Learning. New York: ACM, 2016: 165-168.

    [11] 姜强, 赵蔚, 李松, 等.个性化自适应学习研究——大数据时代数字化学习的新常态[J].中国电化教育, 2016(2):25-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=667836747

    JIANG Q, ZHAO W, LI S, et al. Research on personalized adaptive learning—a new normal form of digital learning in big data era[J]. China Educational Technology, 2016(2):25-32. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=667836747

    [12] 叶海智, 杨柳, 黄宏涛, 等.面向认知诊断的能力等级自适应试题推送模型构建及应用[J].电化教育研究, 2019(11):93-98;113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201911013

    YE H Z, YANG L, HUANG H T, et al. Construction and application of an adaptive test push model for cognitive diagnosis[J]. e-Education Research, 2019(11):93-98;113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201911013

    [13]

    LIU Q, TONG S W, LIU C R, et al. Exploiting cognitive structure for adaptive learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery & Data Mining. New York: ACM, 2019: 627-635.

    [14] 崔向平, 徐娟.自适应学习技术的应用、问题及趋势——访美国俄亥俄州立大学大卫·斯坦恩教授[J].开放教育研究, 2019, 25(5):4-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kfjyyj201905002

    CUI X P, XU J. Application, issues, and trends of adaptive learning technology:an interview with Professor David Stein of Ohio State University[J]. Open Education Research, 2019, 25(5):4-10. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kfjyyj201905002

    [15] 师亚飞, 彭红超, 童名文.基于学习画像的精准个性化学习路径生成性推荐策略研究[J].中国电化教育, 2019(5):84-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdhjy201905013

    SHI Y F, PENG H C, TONG M W. Research on generative paths recommendation strategies of precisive persona-lized learning based on learning profile[J]. China Educational Technology, 2019(5):84-91. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdhjy201905013

    [16] 原福永, 冯凯东, 李晨, 等.融合用户经历的多策略自适应推荐模型[J].小型微型计算机系统, 2019, 40(7):1410-1415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxwxjsjxt201907011

    YUAN F Y, FENG K D, LI C, et al. User experience based adaptive recommendation model[J]. Journal of Chinese Computer Systems, 2019, 40(7):1410-1415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xxwxjsjxt201907011

    [17]

    XIE H, CHU H C, HWANG G J, et al. Trends and development in technology-enhanced adaptive/personalized lear-ning:a systematic review of journal publications from 2007 to 2017[J]. Computers & Education, 2019, 140:1-16.

    [18] 李菲茗, 叶艳伟, 李晓菲, 等.知识追踪模型在教育领域的应用:2008—2017年相关研究的综述[J].中国远程教育, 2019(7):86-91. http://www.cnki.com.cn/Article/CJFDTotal-DDJY201907012.htm
    [19]

    ROY S, MADHYASTHA M, LAWRENCE S, et al. Inferring concept prerequisite relations from online educational resources[C]//Proceedings of the AAAI Conference on Ar-tificial Intelligence. Honolulu, Hawaii: AAAI Press, 2019, 33: 9589-9594.

    [20] 李振, 周东岱.教育知识图谱的概念模型与构建方法研究[J].电化教育研究, 2019(8):78-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201908010

    LI Z, ZHOU D D. Research on conceptual model and construction method of educational knowledge graph[J]. e-Education Research, 2019(8):78-86. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dhjyyj201908010

    [21]

    NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in knowledge graphs[C]//Proceedings of the 57th Confe-rence of the Association for Computational Linguistics. Florence: Association for Computational Linguistics, 2019: 1-10.

    [22]

    XU J C, QIU X P, CHEN K, et al. Knowledge graph representation with jointly structural and textual encoding[C]//Proceedings of the 26th International Joint Confe-rence on Artificial Intelligence. Melbourne: Morgan Kaufmann Publishers Inc, 2017: 1318-1324.

    [23]

    PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Quebec: MIT Press, 2015: 505-513.

    [24]

    YEUNG C K, YEUNG D Y. Addressing two problems in deep knowledge tracing via prediction-consistent regularization[C]//Proceedings of the 5th Annual ACM Confe-rence on Learning at Scale. New York: ACM, 2018: 1-10.

    [25]

    KIM D, PARK C, OH J, et al. Deep hybrid recommender systems via exploiting document context and statistics of items[J]. Information Sciences, 2017, 417:72-87. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1a314923edbfcb778f94a7f442a8169a

    [26]

    NABIZADEH A H, GONÇALVES D, GAMA S, et al. Ada-ptive learning path recommender approach using auxiliary learning objects[J]. Computers & Education, 2020, 147:1-17.

    [27]

    ZHOU Y W, HUANG C Q, HU Q T, et al. Personalized learning full-path recommendation model based on LSTM neural networks[J]. Information Sciences, 2018, 444:135-152. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d0d691997ba4c9a87293929466b0a66b

    [28]

    CHEN P H, LU Y, ZHENG V W, et al. Knowedu:a system to construct knowledge graph for education[J]. IEEE Access, 2018, 6:31553-31563. http://ieeexplore.ieee.org/document/8362657

    [29]

    JI G L, LIU K, HE S Z, et al. Distant supervision for relation extraction with sentence-level attention and entity descriptions[C]//Proceedings of the 31st AAAI Conference on Artificial Intelligence. San Francisco, California: AAAI Press, 2017: 3060-3066.

    [30]

    WANG L, SY A, LIU L, et al. Learning to represent stu-dent knowledge on programming exercises using deep lear-ning[C]//Proceedings of the 10th International Confe-rence on Educational Data Mining. Wuhan, China: International Educational Data Mining Society, 2017: 324-329.

    [31]

    XIONG X L, ZHAO S Y, VAN INWEGEN E G, et al. Going deeper with deep knowledge tracing[C]//Proceedings of the 9th International Conference on Educational Data Mining. Raleigh, North Carolina: International Educational Data Mining Society, 2016: 545-550.

    [32]

    CORBETT A T, ANDERSON J R. Knowledge tracing:mode-ling the acquisition of procedural knowledge[J]. User Mode-ling and User-Adapted Interaction, 1994, 4(4):253-278.

    [33]

    KÄSER T, KLINGLER S, SCHWING A G, et al. Dynamic Bayesian networks for student modeling[J]. IEEE Tran-sactions on Learning Technologies, 2017, 10(4):450-462.

    [34]

    LIN Y K, SHEN S Q, LIU Z Y, et al. Neural relation extraction with selective attention over instances[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Berlin: Association for Computational Linguistics, 2016: 2124-2133.

    [35]

    OKUBO F, YAMASHITA T, SHIMADA A, et al. A neural network approach for students' performance prediction[C]//Proceedings of the 7th International Learning Analytics & Knowledge Conference. New York: ACM, 2017: 598-599.

    [36]

    NORMADHI N B A, SHUIB L, NASIR H N M, et al. Identification of personal traits in adaptive learning environment:systematic literature review[J]. Computers & Education, 2019, 130:168-190.

    [37] 佩特·约翰内斯, 拉里·拉格斯多姆.自适应学习:溯源、前景与误区[J].中国远程教育, 2018(7):43-53;80.

    JOHANES P, LAGERSTROM L. Adative learning:tra-cing, prospect and misunderstanding[J]. Distance Education in China, 2018(7):43-53;80.

    [38] 梁迎丽, 刘陈.人工智能教育应用的现状分析、典型特征与发展趋势[J].中国电化教育, 2018(3):24-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=674704183

    LIANG Y L, LIU C. The application status, typical cha-racteristics and development trends of artificial intelligence in education[J]. China Educational Technology, 2018(3):24-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=674704183

    [39] NOVAK J D.学习、创造与使用知识概念图促进企业和学校的学习变革[M].赵国庆, 吴金闪, 唐京京, 等译.北京: 人民邮电出版社, 2016.
    [40] 李振, 周东岱, 王勇. "人工智能+"视域下的教育知识图谱:内涵、技术框架与应用研究[J].远程教育杂志, 2019, 37(4):42-53.

    LI Z, ZHOU D D, WANG Y. Research of educational knowledge graph from the perspective of "artificial intelligence+":connotation, technical framework and application[J]. Journal of Distance Education, 2019, 37(4):42-53.

    [41] 马相春, 钟绍春, 徐妲.大数据视角下个性化自适应学习系统支撑模型及实现机制研究[J].中国电化教育, 2017(4):97-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdhjy201704015

    MA X C, ZHONG S C, XU D. Research on support model and implementation mechanism of personalized adaptive learning system from the perspective of big data[J]. China Educational Technology, 2017(4):97-102. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdhjy201704015

    [42]

    CHAPLOT D, KOEDINGER K R. Data-driven automated induction of prerequisite structure graphs[C]//Procee-dings of 9th International Conference on Educational Data Mining. Raleigh, North Carolina: International Educational Data Mining Society, 2016: 318-323.

    [43]

    SOCHER R, CHEN D Q, MANNING C D, et al. Reaso-ning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada: Curran Associates Inc, 2013: 926-934.

    [44]

    BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems.Lake Tahoe, Nevada: Curran Associates Inc, 2013: 2787-2795.

    [45]

    JI G L, HE S Z, XU L H, et al. Knowledge graph embe-dding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Confe-rence on Natural Language Processing. Beijing: Association for Computer Linguistics, 2015: 687-696.

    [46]

    KAZEMI S M, POOLE D. Simple embedding for link prediction in knowledge graph[C]//Proceedings of the 32nd Annual Conference on Neural Information Processing Systems. Montréal, Canada: Neural Information Processing Sys-tems, 2018: 4284-4295.

    [47]

    EBBINGHAUS H. Memory:a contribution to experimental psychology[J]. Annals of Neurosciences, 2013, 20(4): 155-156.

    [48]

    MATAYOSHI J, GRANZIOL U, DOBLE C, et al. Forge-tting curves and testing effect in an adaptive learning and assessment system[C]//Proceedings of the 11th International Conference on Educational Data Mining. Buffalo, NY: International Educational Data Mining Society, 2018: 607-612.

    [49]

    HENZE N, NEJDL W. Adaptation in open corpus hypermedia[J]. International Journal of Artificial Intelligence in Education, 2001, 12(4):325-350. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0212447533

    [50]

    TRIANTAFILLOU E, POMPORTSIS A, DEMETRIADIS S, et al. The value of adaptivity based on cognitive style:an empirical study[J]. British Journal of Educational Technology, 2004, 35(1):95-106.

    [51]

    LIANG Y, CHEN H R. The research of video resource personalized recommendation system based on education website[C]//Proceedings of the 9th International Confe-rence on Computer Science & Education. New York: ACM, 2014: 898-902.

    [52]

    HAN Q Y, GAO F, WANG H. Ontology-based learning object recommendation for cognitive considerations[C]//Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan: IEEE, 2010: 2746-2750.

    [53]

    KUSUMAWARDANI S S, PRAKOSO R S, SANTOSA P I. Using ontology for providing content recommendation based on learning styles inside e-learning[C]//Procee-dings of the 2nd International Conference on Artificial Intelligence, Modelling and Simulation. New York: ACM, 2014: 276-281.

    [54]

    SHISHEHCHI S, BANIHASHEM S Y, ZIN N A M, et al. Review of personalized recommendation techniques for learners in e-learning systems[C]//Proceedings of the 2011 International Conference on Semantic Technology and Information Retrieval. Putrajaya: IEEE, 2011: 277-281.

    [55]

    ZHAO C Y, WANG J L. Network education video recommendation algorithm based on context and trust relationship[C]//Proceedings of the 2013 IEEE 4th International Conference on Software Engineering and Service Science. Beijing: IEEE, 2013: 537-540.

    [56]

    ŠPILKA M, POSOLDOVA A, ROZINAJ G, et al. Importance of recommendation system in modern forms of lear-ning[C]//Proceedings of the 2016 International Confe-rence on Systems, Signals and Image Processing. Bratislava, Slovakia: IEEE, 2016: 1-4.

    [57] 陈敏, 余胜泉, 杨现民, 等.泛在学习的内容个性化推荐模型设计——以"学习元"平台为例[J].现代教育技术, 2011(6):13-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdjyjs201106003

    CHEN M, YU S Q, YANG X M, et al. The personalized recommendation model design of content in the ubiquitous learning——taking "Learning Cell" for example[J]. Modern Educational Technology, 2011(6):13-18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xdjyjs201106003

    [58]

    TANG S, PETERSON J C, PARDOS Z A. Deep neural networks and how they apply to sequential education data[C]//Proceedings of the 3rd ACM Conference on Lear-ning at Scale. New York: ACM, 2016: 321-324.

    [59] 余胜泉, 李晓庆.基于大数据的区域教育质量分析与改进研究[J].电化教育研究, 2017(7):5-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672492952

    YU S Q, LI X Q. Research on the analysis and improvement of regional education quality based on big data[J]. e-Education Research, 2017(7):5-12. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672492952

    [60] 姜强, 赵蔚, 李松, 等.大数据背景下的精准个性化学习路径挖掘研究——基于AprioriAll的群体行为分析[J].电化教育研究, 2018(2):45-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=674308242

    JIANG Q, ZHAO W, LI S, et al. Research on the mining of precise personalized learning path in age of big data:analysis of group learning behaviors based on AprioriAll[J]. e-Education Research, 2018(2):45-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=674308242

    [61]

    HUANG Z, XU W, YU K. Bidirectional LSTM-CRF mo-dels for sequence tagging[J]. arXiv, (2015-08-09)[2020-05-16]. https://arxiv.org/abs/1508.01991.

    [62] 陈伟, 吴友政, 陈文亮, 等.基于BiLSTM-CRF的关键词自动抽取[J].计算机科学, 2018, 45(S1):91-96;113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjkx2018z1019

    CHEN W, WU Y Z, CHEN W L, et al. Automatic keyword extraction based on BiLSTM-CRF[J]. Computer Science, 2018, 45(S1):91-96;113. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjkx2018z1019

    [63]

    MA X Z, HOVY E. End-to-end sequence labeling via bi-directional lstm-cnns-crf[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Lingui-stics. Berlin: Association for Computer Linguistics, 2016: 1064-1074.

    [64]

    LI J, YE D H, SHANG S. Adversarial transfer for named entity boundary detection with pointer networks[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao: Morgan Kaufmann Publishers Inc, 2019: 5053-5059.

    [65]

    KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J/OL]. arXiv, (2015-08-09)[2020-05-16]. https://arxiv.org/abs/1508.01991.

    [66]

    SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Mode-ling relational data with graph convolutional networks[C]//Proceedings of the European Semantic Web Conference. Berlin: Springer, 2018: 593-607.

    [67]

    KHAJAH M, LINDSEY R V, MOZER M C. How deep is knowledge tracing?[C]//Proceedings of the 9th International Conference on Educational Data Mining. Raleigh, North Carolina: International Educational Data Mining Society, 2016: 94-101.

    [68]

    NAKAGAWA H, IWASAWA Y, MATSUO Y. Graph-based knowledge tracing: modeling student proficiency using graph neural network[C]//Proceedings of the 2019 IEEE/WIC/ACM International Conference on Web Intelligence. New York: ACM, 2019: 156-163.

    [69]

    BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[J]. arXiv, (2018-01-04)[2020-05-16]. https://arxiv.org/abs/1806.01261.

    [70]

    GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning. New York: ACM, 2017: 1263-1272.

    [71]

    WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT: IEEE, 2018: 7794-7803.

    [72]

    PANDEY S, KARYPIS G. A self-attentive model for knowledge tracing[C]//Proceedings of the 12th International Conference on Educational Data Mining. Montréal: International Educational Data Mining Society, 2019: 384-389.

    [73]

    GONZÁLEZ-BRENES J, HUANG Y, BRUSILOVSKY P. General features in knowledge tracing to model multiple subskills, temporal item response theory, and expert knowledge[C]//Proceedings of the 7th International Conference on Educational Data Mining. London: International Educational Data Mining Society, 2014: 84-91.

    [74]

    CAI Y L, NIU Z D, WANG Y W, et al. Learning trend analysis and prediction based on knowledge tracing and regression analysis[C]//Proceedings of the International Conference on Database Systems for Advanced Applications. Berlin: Springer, 2015: 29-41.

    [75]

    KHAJAH M M, HUANG Y, GONZÁLEZ-BRENES J P, et al. Integrating knowledge tracing and item response theory: a tale of two frameworks[C]//Proceedings of 4th International Workshop on Personalization Approaches in Learning Environments. Aalborg: CEUR Workshop, 2014, 1181: 7-15.

    [76]

    WANG X, HE X N, CAO Y X, et al. Kgat: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Confe-rence on Knowledge Discovery & Data Mining. New York: ACM, 2019: 950-958.

    [77]

    PLIAKOS K, JOO S H, PARK J Y, et al. Integrating machine learning into item response theory for addressing the cold start problem in adaptive learning systems[J]. Computers & Education, 2019, 137:91-103.

  • 期刊类型引用(2)

    1. 李宪,达举霞,章欢. 四阶两点边值问题n个对称正解的存在性. 华南师范大学学报(自然科学版). 2024(01): 123-127 . 百度学术
    2. 达举霞. 四阶两点边值问题3个对称正解的存在性. 华南师范大学学报(自然科学版). 2021(01): 90-93 . 百度学术

    其他类型引用(0)

图(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-02-12
  • 网络出版日期:  2020-09-03
  • 刊出日期:  2020-08-24

目录

/

返回文章
返回