球形氧化锌/石墨烯复合材料的制备及其对铅酸电池循环寿命的影响

徐绮勤, 马国正, 吴宝珠, 陈红雨

徐绮勤, 马国正, 吴宝珠, 陈红雨. 球形氧化锌/石墨烯复合材料的制备及其对铅酸电池循环寿命的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 46-52. DOI: 10.6054/j.jscnun.2020026
引用本文: 徐绮勤, 马国正, 吴宝珠, 陈红雨. 球形氧化锌/石墨烯复合材料的制备及其对铅酸电池循环寿命的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(2): 46-52. DOI: 10.6054/j.jscnun.2020026
XU Qiqin, MA Guozheng, WU Baozhu, CHEN Hongyu. The Synthesis of S-ZnO/rGO Composite Material and the Cycle Performance of Lead Acid Battery[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 46-52. DOI: 10.6054/j.jscnun.2020026
Citation: XU Qiqin, MA Guozheng, WU Baozhu, CHEN Hongyu. The Synthesis of S-ZnO/rGO Composite Material and the Cycle Performance of Lead Acid Battery[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(2): 46-52. DOI: 10.6054/j.jscnun.2020026

球形氧化锌/石墨烯复合材料的制备及其对铅酸电池循环寿命的影响

基金项目: 

国家自然科学基金项目 21773076

广州市民生科技项目 201803020038

详细信息
    通讯作者:

    马国正,副教授,Email:maguozheng@m.scnu.edu.cn

  • 中图分类号: O646

The Synthesis of S-ZnO/rGO Composite Material and the Cycle Performance of Lead Acid Battery

  • 摘要: 采用水热法制备了球形氧化锌/石墨烯(S-ZnO/rGO)复合材料,首先采用水热法制备S-ZnO, 再将氧化石墨(GO)和S-ZnO的混合水溶液在180 ℃下水热反应12 h,最终得到S-ZnO/rGO复合材料.以S-ZnO/rGO复合材料为铅酸蓄电池负极添加剂,探究了0.5%、1.0%、1.5%、2.0%这4种添加质量分数对铅酸电池电化学性能的影响.电化学测试结果表明:电池在高倍率部分荷电状态(HRPSoC)下的循环寿命随着复合材料添加质量分数的增加先增大后减小,其中掺入1.0% S-ZnO/rGO复合材料的电池在HRPSoC下循环性能最好,寿命可达19 158次,比普通铅酸蓄电池的寿命(7 210次)延长了165.7%.由此表明添加S-ZnO/rGO复合材料能够改善负极板的硫酸盐化现象,从而提高电池的循环稳定性.
    Abstract: A simple and effective method was developed for preparing spherical zinc oxide/graphene (S-ZnO/rGO) composite material. In the synthesis process, GO prepared with the modified Humm3' method was dissolved in deionized water and mixed with S-ZnO powder. Then, the homogeneous solution was transferred to 100 mL PTFE lined stainless-steel autoclave and put into an oven at 180 ℃ for 12 h. The product was obtained with freeze-drying for 48 h. Subsequently, it was incorporated into the negative active materials at different dosages (0.5%, 1.0%, 1.5% and 2.0%) to prepare lead-acid batteries. The electrochemical properties of the batteries were studied. According to the results, the cycle life of the battery under the high-rate partial-state-of-charge (HRPSoC) condition showed the trend of first increasing and then decreasing with the doping amount of the S-ZnO/rGO composites increasing. The battery with 1.0% S-ZnO/rGO composite exhibited the best performance of HRPSoC cycle life, reaching 19 158 cycles, and it was improved by more than 165% compared with that of the ordinary lead-acid battery (7 210 cycles).
  • 图  1   制备S-ZnO/rGO复合材料的示意图

    Figure  1.   The schematic illustration of preparing the S-ZnO/rGO composite

    图  2   S-ZnO和S-ZnO/rGO复合材料的热重分析曲线

    Figure  2.   The TG curves of the S-ZnO and S-ZnO/rGO composite

    图  3   S-ZnO和S-ZnO/rGO复合物的XRD谱

    Figure  3.   The XRD patterns of S-ZnO and S-ZnO/rGO composite

    图  4   不同材料的SEM图

    Figure  4.   The SEM images of different materials

    图  5   S-ZnO/rGO复合材料的CV曲线

    Figure  5.   The CV curves of the S-ZnO/rGO composite

    图  6   rGO和S-ZnO/rGO复合材料的Nyquist图

    Figure  6.   The Nyquist plots of the rGO and S-ZnO/rGO composite

    图  7   S-ZnO/rGO电池的放电比容量曲线和循环性能曲线

    Figure  7.   The discharge curves and cyclic performance of the S-ZnO/rGO batteries

    图  8   HRPSoC循环后负极材料的SEM图

    Figure  8.   The SEM images of cathodes after HRPSoC cycles

    图  9   电池的放电比容量和循环性能曲线

    Figure  9.   The discharge curves and cyclic performance of the batteries

  • [1]

    LAM L T, LOUEY R, HAIGH N P, et al. VRLA Ultrabattery for high-rate partial-state-of-charge operation[J]. Journal of Power Sources, 2007, 174:16-29. doi: 10.1016/j.jpowsour.2007.05.047

    [2]

    NAKAMURA K, SHIOMI M, TAKAHASHI K, et al. Failure modes of valve-regulated lead/acid batteries[J]. Journal of Power Sources, 1996, 59:153-157. doi: 10.1016/0378-7753(95)02317-8

    [3]

    SARAVANAN M, GANESAN M, AMBALAVANAN S. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery[J]. Journal of Power Sources, 2014, 251:20-29. doi: 10.1016/j.jpowsour.2013.10.143

    [4]

    HARIPRAKASH B, GAFFOOR S A, SHUKLA A K. Lead-acid batteries for partial-state-of-charge applications[J]. Journal of Power Sources, 2009, 191:149-153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd8c8f8068b364f2475fc8c1407151b7

    [5]

    BULLOCK K R. Carbon reactions and effects on valve-regulated lead-acid (VRLA) battery cycle life in high-rate, partial state-of-charge cycling[J]. Journal of Power Sources, 2010, 195:4513-4519. doi: 10.1016/j.jpowsour.2009.10.027

    [6]

    TONG P, ZHAO R, ZHANG R, et al. Characterization of lead (Ⅱ)-containing activated carbon and its excellent performance of extending lead-acid battery cycle life for high-rate partial-state-of-charge operation[J]. Journal of Power Sources, 2015, 286:91-102. doi: 10.1016/j.jpowsour.2015.03.150

    [7]

    SWOGGER S W, EVERILL P, DUBEY D P, et al. Discrete carbon nanotubes increase lead acid battery charge acceptance and performance[J]. Journal of Power Sources, 2014, 261:55-63. doi: 10.1016/j.jpowsour.2014.03.049

    [8]

    GEIM A K, NOVOSELOY K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-91. doi: 10.1038/nmat1849

    [9] 孙丰强, 陈颖.三维结构化石墨烯及其复合材料[J].华南师范大学学报(自然科学版), 2016, 48(5):19-24. doi: 10.6054/j.jscnun.2016.05.001

    SUN F Q, CHEN Y. Three-dimentionally structured graphene and its composites[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(5):19-24. doi: 10.6054/j.jscnun.2016.05.001

    [10]

    WANG M, TANG M, CHEN S, et al. Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery[J]. Advanced Materials, 2017, 29:1703882/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2beaa18f8449465fca756c4d12af9307

    [11]

    YEUNG K K, ZHANG X, KWOK S C T, et al. Enhanced cycle life of lead-acid battery using graphene as a sulfation suppression additive in negative active material[J]. RSC Advances. 2015, 5:71314-71321. doi: 10.1039/C5RA11114E

    [12]

    LONG Q, MA G, XU Q, et al. Improving the cycle life of lead-acid batteries using three-dimensional reduced graphene oxide under the high-rate partial-state-of-charge condition[J]. Journal of Power Sources, 2017, 343:188-196. doi: 10.1016/j.jpowsour.2017.01.056

    [13]

    FANG M, WANG K, LU H, et al. Covalent polymer functionalization of graphene nanosheets and mechanical pro-perties of composites[J]. Journal of Materials Chemistry, 2009, 19(38):7098-7105. doi: 10.1039/b908220d

    [14]

    PERKINS C, LICHTY P R, WEIMER A W. Thermal ZnO dissociation in a rapid aerosol reactor as part of a solar hydrogen production cycle[J]. International Journal of Hydrogen Energy, 2008, 33(2):499-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e842a718fbc0cff6056f18aa671d3e94

    [15]

    CHEN M N, ZHANG D Y, THOMPSON L T, et al. Catalytic properties of Ag promoted ZnO/Al2O3 catalysts for hydrogen production by steam reforming of ethanol[J]. International Journal of Hydrogen Energy, 2011, 36(13):7516-7522. doi: 10.1016/j.ijhydene.2011.03.128

    [16]

    YEO J S, KANG R, LEE S, et al. Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer[J]. Nano Energy, 2015, 12(12):96-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=98af997c2c72ae80dc8da0f4da1c61fb

    [17]

    ZHANG Q, DANDENEAU C S, ZHOU X, et al. ChemInform abstract:ZnO nanostructures for dye-sensitized solar cells[J]. Cheminform, 2010, 41(2):4087-4108. doi: 10.1002/adma.200803827

    [18]

    BAXTERR J B, AYDIL E S. Nanowire-based dye-sensitized solar cells[J]. Applied Physics Letters, 2005, 86(5):053114/1-3. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229099307/

    [19]

    FLEISCHHAKER F, WLOKA V, HENNIG I. ZnO based field-effect transistors (FETs):solution-processable at low temperatures on flexible substrates[J]. Journal of Materials Chemistry, 2010, 20(32):6622-6625. doi: 10.1039/c0jm01477j

    [20]

    ZHANG H, WU R, CHEN Z, et al. Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties[J]. CrystEngComm, 2012, 14(5):1775-1782. doi: 10.1039/c1ce06163a

    [21]

    XU F, YUAN Y, HAN H, et al. Synthesis of ZnO/CdS hierarchical heterostructure with enhanced photocatalytic efficiency under nature sunlight[J]. CrystEngComm, 2012, 14(10):3615-3622. doi: 10.1039/c2ce06267d

    [22]

    FANG J, FAN H, DONG G. A facile way to synthesize cost-effective ZnO nanorods with enhanced photocatalytic activity[J]. Materials Letters, 2014, 120:147-150. doi: 10.1016/j.matlet.2014.01.043

    [23]

    CHEN D, ZHAO Y, CHEN Y, et al. One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high temperature thermoelectric applications[J]. ACS Applied Materials & Interfaces, 2015, 7(5):3224-3230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=651d94fab284ce477e8f7cd94d89a50d

    [24]

    HUMMERS W S, OFFEMAN R. Preparation of graphitic oxide[J]. Journal of America Chemistry Society Journal of the American Chemical Society[J]. 1958, 80(6): 1339-1339. doi: 10.1021/ja01539a017

    [25]

    SUN J H, DONG S Y, WANG Y K, et al. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst[J]. Journal of Hazardous Materials, 2009, 172(2):1520-1526. doi: 10.1016-j.jhazmat.2009.08.022/

    [26]

    EBNER E, BUROW D, PANKE J, et al. Carbon blacks for lead-acid batteries in micro-hybrid applications-studied by transmission electron microscopy and Raman spectroscopy[J]. Journal of Power Sources, 2013, 222:554-560. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=03b26a9ca926520a2399027a692421f2

  • 期刊类型引用(3)

    1. 丁绮,李艳,陈伟,程辉. 三维多孔碳材料的制备及对左氧氟沙星吸附性能研究. 中国卫生检验杂志. 2023(02): 154-159+163 . 百度学术
    2. 刘自超,任亚男,周文静,刘春晖,李孜娴,杨金康,孙齐状,王龙,赵鹏. 左氧氟沙星在铁氧化物表面的吸附:动力学和pH的影响. 农业环境科学学报. 2023(02): 362-372 . 百度学术
    3. 焦天宇,王宇宁,向巧灵,张杰,张竞潇,张威,张大伟. 左氧氟沙星/壳聚糖/聚乙烯醇纳米纤维膜的制备与抑菌性能研究. 化学与粘合. 2022(01): 32-38 . 百度学术

    其他类型引用(5)

图(9)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 8
出版历程
  • 收稿日期:  2019-02-18
  • 网络出版日期:  2021-03-21
  • 刊出日期:  2020-04-24

目录

    /

    返回文章
    返回