The Synthesis of S-ZnO/rGO Composite Material and the Cycle Performance of Lead Acid Battery
-
摘要: 采用水热法制备了球形氧化锌/石墨烯(S-ZnO/rGO)复合材料,首先采用水热法制备S-ZnO, 再将氧化石墨(GO)和S-ZnO的混合水溶液在180 ℃下水热反应12 h,最终得到S-ZnO/rGO复合材料.以S-ZnO/rGO复合材料为铅酸蓄电池负极添加剂,探究了0.5%、1.0%、1.5%、2.0%这4种添加质量分数对铅酸电池电化学性能的影响.电化学测试结果表明:电池在高倍率部分荷电状态(HRPSoC)下的循环寿命随着复合材料添加质量分数的增加先增大后减小,其中掺入1.0% S-ZnO/rGO复合材料的电池在HRPSoC下循环性能最好,寿命可达19 158次,比普通铅酸蓄电池的寿命(7 210次)延长了165.7%.由此表明添加S-ZnO/rGO复合材料能够改善负极板的硫酸盐化现象,从而提高电池的循环稳定性.
-
关键词:
- S-ZnO/rGO复合材料 /
- 水热法 /
- 铅酸电池 /
- HRPSoC循环寿命
Abstract: A simple and effective method was developed for preparing spherical zinc oxide/graphene (S-ZnO/rGO) composite material. In the synthesis process, GO prepared with the modified Humm3' method was dissolved in deionized water and mixed with S-ZnO powder. Then, the homogeneous solution was transferred to 100 mL PTFE lined stainless-steel autoclave and put into an oven at 180 ℃ for 12 h. The product was obtained with freeze-drying for 48 h. Subsequently, it was incorporated into the negative active materials at different dosages (0.5%, 1.0%, 1.5% and 2.0%) to prepare lead-acid batteries. The electrochemical properties of the batteries were studied. According to the results, the cycle life of the battery under the high-rate partial-state-of-charge (HRPSoC) condition showed the trend of first increasing and then decreasing with the doping amount of the S-ZnO/rGO composites increasing. The battery with 1.0% S-ZnO/rGO composite exhibited the best performance of HRPSoC cycle life, reaching 19 158 cycles, and it was improved by more than 165% compared with that of the ordinary lead-acid battery (7 210 cycles).-
Keywords:
- S-ZnO/rGO composite /
- hydrothermal method /
- lead-acid battery /
- HRPSoC cycle life
-
-
-
[1] LAM L T, LOUEY R, HAIGH N P, et al. VRLA Ultrabattery for high-rate partial-state-of-charge operation[J]. Journal of Power Sources, 2007, 174:16-29. doi: 10.1016/j.jpowsour.2007.05.047
[2] NAKAMURA K, SHIOMI M, TAKAHASHI K, et al. Failure modes of valve-regulated lead/acid batteries[J]. Journal of Power Sources, 1996, 59:153-157. doi: 10.1016/0378-7753(95)02317-8
[3] SARAVANAN M, GANESAN M, AMBALAVANAN S. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery[J]. Journal of Power Sources, 2014, 251:20-29. doi: 10.1016/j.jpowsour.2013.10.143
[4] HARIPRAKASH B, GAFFOOR S A, SHUKLA A K. Lead-acid batteries for partial-state-of-charge applications[J]. Journal of Power Sources, 2009, 191:149-153. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fd8c8f8068b364f2475fc8c1407151b7
[5] BULLOCK K R. Carbon reactions and effects on valve-regulated lead-acid (VRLA) battery cycle life in high-rate, partial state-of-charge cycling[J]. Journal of Power Sources, 2010, 195:4513-4519. doi: 10.1016/j.jpowsour.2009.10.027
[6] TONG P, ZHAO R, ZHANG R, et al. Characterization of lead (Ⅱ)-containing activated carbon and its excellent performance of extending lead-acid battery cycle life for high-rate partial-state-of-charge operation[J]. Journal of Power Sources, 2015, 286:91-102. doi: 10.1016/j.jpowsour.2015.03.150
[7] SWOGGER S W, EVERILL P, DUBEY D P, et al. Discrete carbon nanotubes increase lead acid battery charge acceptance and performance[J]. Journal of Power Sources, 2014, 261:55-63. doi: 10.1016/j.jpowsour.2014.03.049
[8] GEIM A K, NOVOSELOY K S. The rise of graphene[J]. Nature Materials, 2007, 6(3):183-91. doi: 10.1038/nmat1849
[9] 孙丰强, 陈颖.三维结构化石墨烯及其复合材料[J].华南师范大学学报(自然科学版), 2016, 48(5):19-24. doi: 10.6054/j.jscnun.2016.05.001 SUN F Q, CHEN Y. Three-dimentionally structured graphene and its composites[J]. Journal of South China Normal University (Natural Science Edition), 2016, 48(5):19-24. doi: 10.6054/j.jscnun.2016.05.001
[10] WANG M, TANG M, CHEN S, et al. Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery[J]. Advanced Materials, 2017, 29:1703882/1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2beaa18f8449465fca756c4d12af9307
[11] YEUNG K K, ZHANG X, KWOK S C T, et al. Enhanced cycle life of lead-acid battery using graphene as a sulfation suppression additive in negative active material[J]. RSC Advances. 2015, 5:71314-71321. doi: 10.1039/C5RA11114E
[12] LONG Q, MA G, XU Q, et al. Improving the cycle life of lead-acid batteries using three-dimensional reduced graphene oxide under the high-rate partial-state-of-charge condition[J]. Journal of Power Sources, 2017, 343:188-196. doi: 10.1016/j.jpowsour.2017.01.056
[13] FANG M, WANG K, LU H, et al. Covalent polymer functionalization of graphene nanosheets and mechanical pro-perties of composites[J]. Journal of Materials Chemistry, 2009, 19(38):7098-7105. doi: 10.1039/b908220d
[14] PERKINS C, LICHTY P R, WEIMER A W. Thermal ZnO dissociation in a rapid aerosol reactor as part of a solar hydrogen production cycle[J]. International Journal of Hydrogen Energy, 2008, 33(2):499-510. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e842a718fbc0cff6056f18aa671d3e94
[15] CHEN M N, ZHANG D Y, THOMPSON L T, et al. Catalytic properties of Ag promoted ZnO/Al2O3 catalysts for hydrogen production by steam reforming of ethanol[J]. International Journal of Hydrogen Energy, 2011, 36(13):7516-7522. doi: 10.1016/j.ijhydene.2011.03.128
[16] YEO J S, KANG R, LEE S, et al. Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer[J]. Nano Energy, 2015, 12(12):96-104. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=98af997c2c72ae80dc8da0f4da1c61fb
[17] ZHANG Q, DANDENEAU C S, ZHOU X, et al. ChemInform abstract:ZnO nanostructures for dye-sensitized solar cells[J]. Cheminform, 2010, 41(2):4087-4108. doi: 10.1002/adma.200803827
[18] BAXTERR J B, AYDIL E S. Nanowire-based dye-sensitized solar cells[J]. Applied Physics Letters, 2005, 86(5):053114/1-3. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0229099307/
[19] FLEISCHHAKER F, WLOKA V, HENNIG I. ZnO based field-effect transistors (FETs):solution-processable at low temperatures on flexible substrates[J]. Journal of Materials Chemistry, 2010, 20(32):6622-6625. doi: 10.1039/c0jm01477j
[20] ZHANG H, WU R, CHEN Z, et al. Self-assembly fabrication of 3D flower-like ZnO hierarchical nanostructures and their gas sensing properties[J]. CrystEngComm, 2012, 14(5):1775-1782. doi: 10.1039/c1ce06163a
[21] XU F, YUAN Y, HAN H, et al. Synthesis of ZnO/CdS hierarchical heterostructure with enhanced photocatalytic efficiency under nature sunlight[J]. CrystEngComm, 2012, 14(10):3615-3622. doi: 10.1039/c2ce06267d
[22] FANG J, FAN H, DONG G. A facile way to synthesize cost-effective ZnO nanorods with enhanced photocatalytic activity[J]. Materials Letters, 2014, 120:147-150. doi: 10.1016/j.matlet.2014.01.043
[23] CHEN D, ZHAO Y, CHEN Y, et al. One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high temperature thermoelectric applications[J]. ACS Applied Materials & Interfaces, 2015, 7(5):3224-3230. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=651d94fab284ce477e8f7cd94d89a50d
[24] HUMMERS W S, OFFEMAN R. Preparation of graphitic oxide[J]. Journal of America Chemistry Society Journal of the American Chemical Society[J]. 1958, 80(6): 1339-1339. doi: 10.1021/ja01539a017
[25] SUN J H, DONG S Y, WANG Y K, et al. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst[J]. Journal of Hazardous Materials, 2009, 172(2):1520-1526. doi: 10.1016-j.jhazmat.2009.08.022/
[26] EBNER E, BUROW D, PANKE J, et al. Carbon blacks for lead-acid batteries in micro-hybrid applications-studied by transmission electron microscopy and Raman spectroscopy[J]. Journal of Power Sources, 2013, 222:554-560. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=03b26a9ca926520a2399027a692421f2
-
期刊类型引用(3)
1. 丁绮,李艳,陈伟,程辉. 三维多孔碳材料的制备及对左氧氟沙星吸附性能研究. 中国卫生检验杂志. 2023(02): 154-159+163 . 百度学术
2. 刘自超,任亚男,周文静,刘春晖,李孜娴,杨金康,孙齐状,王龙,赵鹏. 左氧氟沙星在铁氧化物表面的吸附:动力学和pH的影响. 农业环境科学学报. 2023(02): 362-372 . 百度学术
3. 焦天宇,王宇宁,向巧灵,张杰,张竞潇,张威,张大伟. 左氧氟沙星/壳聚糖/聚乙烯醇纳米纤维膜的制备与抑菌性能研究. 化学与粘合. 2022(01): 32-38 . 百度学术
其他类型引用(5)