Injective hulls of S-posets over a pogroup
-
摘要: 幺半群S上的每个S-系都存在, 并且在同构意义下具有唯一的内射包(\cite{Berthiaume}). 偏序幺半群S上的S-偏序系是S-系理论的推广. 设S是一个偏序群. 应用S-系理论及序理论的方法, 讨论了S-偏序系范畴的内射元, 得出每个S-偏序系AS都存在唯一的内射包, 并具体构造了AS的内射包. 在此基础上, 进一步得出AS的内射包既是A的极小内射扩张, 又是A的极大本质扩张.Abstract: An S-poset is a generalization of an S-act for a pomonoid S. Let S be a pogroup. In this work, by using S-act theory and partially order theory, injectives in the category of S-posets are studied. It is obtained that for any S-poset AS, AS admits an injective hull, which is unique up to isomorphism. Furthermore, the injective hull of AS is necessarily a minimal injective extension and a maximal essential extension of A, and vice versa.
-
Keywords:
- pogroup /
- S-poset /
- injectivity /
- injectivehull
-
-
计量
- 文章访问数: 1348
- HTML全文浏览量: 97
- PDF下载量: 320