• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
SHI Yongsheng, ZHAI Xinran, HU Yujun. Machine Learning-based Prediction of the Remaining Life of Sodium-ion Batteries[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 17-24. DOI: 10.6054/j.jscnun.2023031
Citation: SHI Yongsheng, ZHAI Xinran, HU Yujun. Machine Learning-based Prediction of the Remaining Life of Sodium-ion Batteries[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 17-24. DOI: 10.6054/j.jscnun.2023031

Machine Learning-based Prediction of the Remaining Life of Sodium-ion Batteries

More Information
  • Received Date: May 14, 2023
  • Available Online: August 25, 2023
  • Sodium-ion battery capacity degradation exhibits nonlinearity and complexity, making accurate prediction of remaining useful life (RUL) extremely difficult. Therefore, this paper proposes an RUL prediction model combining Singular Spectrum Analysis (SSA) optimization algorithm with Gradient Boosting Regression Tree (GBRT). Firstly, experimental data is filtered and smoothed, and Incremental Capacity (IC) curves are plotted. The health indicators (HI) with high correlation to capacity decay are extracted from the IC curves. Secondly, PCA algorithm is used to reduce data redundancy, and the processed data is inputted into the GBRT model. SSA algorithm is used to search for the optimal hyperparameters to improve prediction accuracy. Finally, multiple sets of aging experimental data are used for validation, with RMSE, MAPE, and MAE all below 15.2, 7%, and 11.2, respectively. The results show that the proposed model has high prediction accuracy and robustness and outperforms other mainstream algorithms.
  • [1]
    陈鹏飞, 冯杰仪, 吴镝. 高能量密度全固态锂金属电池Li6.4La3Zr1.4Ta0.6O12基锂硼负极的制备及性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 28-33. doi: 10.6054/j.jscnun.2022040

    CHEN P F, FENG J Y, WU D. The preparation and performance of Li6.4La3Zr1.4Ta0.6O12-based lithium boron anode for the high energy density all-solid-state lithium metal battery[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 28-33. doi: 10.6054/j.jscnun.2022040
    [2]
    USISKIN R, LU Y, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials, 2021, 6(11): 1020-1035. doi: 10.1038/s41578-021-00324-w
    [3]
    菅夏琰, 金俊腾, 王瑶, 等. 钠离子电池层状氧化物正极材料研究进展[J]. 工程科学学报, 2022, 44(4): 601-611. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202204013.htm

    JIAN X Y, JIN J T, WANG Y, et al. Recent progress on layered oxide cathode materials for sodium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(4): 601-611. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202204013.htm
    [4]
    陈晓秋, 汝强, 王朕, 等. 高容量钠离子电池SnSbCo/rGO负极材料[J]. 华南师范大学学报(自然科学版), 2018, 50(2): 34-37. http://journal-n.scnu.edu.cn/article/id/3954

    CHEN X Q, RU Q, WANG Z, et al. SnSbCo/rGO anodes of high capacity sodium ion batteries[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(2): 34-37. http://journal-n.scnu.edu.cn/article/id/3954
    [5]
    肖迁, 穆云飞, 焦志鹏, 等. 基于改进LightGBM的电动汽车电池剩余使用寿命在线预测[J]. 电工技术学报, 2022, 37(17): 4517-4527. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202217021.htm

    XIAO Q, MU Y F, JIAO Z P, et al. Improved LightGBM based remaining useful life prediction of lithium-ion battery under driving conditions[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202217021.htm
    [6]
    ZHU R, CHEN Y, PENG W, et al. Bayesian deep-learning for RUL prediction: an active learning perspective[J]. Reliability Engineering & System Safety, 2022, 228: 108758/1-15.
    [7]
    AHWIADI M, WANG W. An enhanced particle filter technology for battery system state estimation and RUL prediction[J]. Measurement, 2022, 191: 110817/1-9. doi: 10.1016/j.measurement.2022.110817
    [8]
    黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202215004.htm

    HUANG K, DING H, GUO Y F, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202215004.htm
    [9]
    LI W, FAN Y, RINGBECK F, et al. Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression[J]. Applied Energy, 2022, 306: 118114/1-16. doi: 10.1016/j.apenergy.2021.118114
    [10]
    LUO K, CHEN X, ZHENG H, et al. A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74: 159-173. doi: 10.1016/j.jechem.2022.06.049
    [11]
    徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J]. 电工技术学报, 2021, 36(17): 3693-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202117015.htm

    XU J N, NI Y L, ZHU C B. Remaining useful life prediction for lithium-ion batteries based on improved support vector regression[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3693-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202117015.htm
    [12]
    CHEHADE A A, HUSSEIN A A. A collaborative Gaussian process regression model for transfer learning of capacity trends between Li-ion battery cells[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9542-9552.
    [13]
    QIN P, ZHAO L, LIU Z. State of health prediction for lithium-ion battery using a gradient boosting-based data-driven method[J]. Journal of Energy Storage, 2022, 47: 103644/1-23.
    [14]
    刘素贞, 袁路航, 张闯, 等. 基于超声时域特征及随机森林的磷酸铁锂电池荷电状态估计[J]. 电工技术学报, 2022, 37(22): 5872-5885. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202222021.htm

    LIU S Z, YUAN L H, ZHANG C, et al. State of charge estimation of LiFeO4 batteries based on time domain features of ultrasonic waves and random forest[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5872-5885. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202222021.htm
    [15]
    ROMAN D, SAXENA S, ROBU V, et al. Machine learning pipeline for battery state-of-health estimation[J]. Nature Machine Intelligence, 2021, 3(5): 447-456.
    [16]
    ZHU J, DEWI DARMA M S, KNAPP M, et al. Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance[J]. Journal of Power Sources, 2020, 448: 227575/1-12.
    [17]
    周才杰, 汪玉洁, 李凯铨, 等. 基于灰色关联度分析-长短期记忆神经网络的锂离子电池健康状态估计[J]. 电工技术学报, 2022, 37(23): 6065-6073. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202223014.htm

    ZHOU C J, WANG Y J, LI K Q, et al. State of health estimation for lithium-ion battery based on gray correlation analysis and long short-term memory neural network[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6065-6073. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202223014.htm
    [18]
    LI X, WANG Z, ZHANG L, et al. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis[J]. Journal of Power Sources, 2019, 410/411: 106-114.
    [19]
    LIN C P, CABRERA J, YANG F, et al. Battery state of health modeling and remaining useful life prediction through time series model[J]. Applied Energy, 2020, 275: 115338/1-12.

Catalog

    Article views (577) PDF downloads (182) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return