Citation: | SHI Yongsheng, ZHAI Xinran, HU Yujun. Machine Learning-based Prediction of the Remaining Life of Sodium-ion Batteries[J]. Journal of South China Normal University (Natural Science Edition), 2023, 55(3): 17-24. DOI: 10.6054/j.jscnun.2023031 |
[1] |
陈鹏飞, 冯杰仪, 吴镝. 高能量密度全固态锂金属电池Li6.4La3Zr1.4Ta0.6O12基锂硼负极的制备及性能[J]. 华南师范大学学报(自然科学版), 2022, 54(3): 28-33. doi: 10.6054/j.jscnun.2022040
CHEN P F, FENG J Y, WU D. The preparation and performance of Li6.4La3Zr1.4Ta0.6O12-based lithium boron anode for the high energy density all-solid-state lithium metal battery[J]. Journal of South China Normal University (Natural Science Edition), 2022, 54(3): 28-33. doi: 10.6054/j.jscnun.2022040
|
[2] |
USISKIN R, LU Y, POPOVIC J, et al. Fundamentals, status and promise of sodium-based batteries[J]. Nature Reviews Materials, 2021, 6(11): 1020-1035. doi: 10.1038/s41578-021-00324-w
|
[3] |
菅夏琰, 金俊腾, 王瑶, 等. 钠离子电池层状氧化物正极材料研究进展[J]. 工程科学学报, 2022, 44(4): 601-611. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202204013.htm
JIAN X Y, JIN J T, WANG Y, et al. Recent progress on layered oxide cathode materials for sodium-ion batteries[J]. Chinese Journal of Engineering, 2022, 44(4): 601-611. https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202204013.htm
|
[4] |
陈晓秋, 汝强, 王朕, 等. 高容量钠离子电池SnSbCo/rGO负极材料[J]. 华南师范大学学报(自然科学版), 2018, 50(2): 34-37. http://journal-n.scnu.edu.cn/article/id/3954
CHEN X Q, RU Q, WANG Z, et al. SnSbCo/rGO anodes of high capacity sodium ion batteries[J]. Journal of South China Normal University(Natural Science Edition), 2018, 50(2): 34-37. http://journal-n.scnu.edu.cn/article/id/3954
|
[5] |
肖迁, 穆云飞, 焦志鹏, 等. 基于改进LightGBM的电动汽车电池剩余使用寿命在线预测[J]. 电工技术学报, 2022, 37(17): 4517-4527. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202217021.htm
XIAO Q, MU Y F, JIAO Z P, et al. Improved LightGBM based remaining useful life prediction of lithium-ion battery under driving conditions[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202217021.htm
|
[6] |
ZHU R, CHEN Y, PENG W, et al. Bayesian deep-learning for RUL prediction: an active learning perspective[J]. Reliability Engineering & System Safety, 2022, 228: 108758/1-15.
|
[7] |
AHWIADI M, WANG W. An enhanced particle filter technology for battery system state estimation and RUL prediction[J]. Measurement, 2022, 191: 110817/1-9. doi: 10.1016/j.measurement.2022.110817
|
[8] |
黄凯, 丁恒, 郭永芳, 等. 基于数据预处理和长短期记忆神经网络的锂离子电池寿命预测[J]. 电工技术学报, 2022, 37(15): 3753-3766. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202215004.htm
HUANG K, DING H, GUO Y F, et al. Prediction of remaining useful life of lithium-ion battery based on adaptive data preprocessing and long short-term memory network[J]. Transactions of China Electrotechnical Society, 2022, 37(15): 3753-3766. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202215004.htm
|
[9] |
LI W, FAN Y, RINGBECK F, et al. Unlocking electrochemical model-based online power prediction for lithium-ion batteries via Gaussian process regression[J]. Applied Energy, 2022, 306: 118114/1-16. doi: 10.1016/j.apenergy.2021.118114
|
[10] |
LUO K, CHEN X, ZHENG H, et al. A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 74: 159-173. doi: 10.1016/j.jechem.2022.06.049
|
[11] |
徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J]. 电工技术学报, 2021, 36(17): 3693-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202117015.htm
XU J N, NI Y L, ZHU C B. Remaining useful life prediction for lithium-ion batteries based on improved support vector regression[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3693-3704. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202117015.htm
|
[12] |
CHEHADE A A, HUSSEIN A A. A collaborative Gaussian process regression model for transfer learning of capacity trends between Li-ion battery cells[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9542-9552.
|
[13] |
QIN P, ZHAO L, LIU Z. State of health prediction for lithium-ion battery using a gradient boosting-based data-driven method[J]. Journal of Energy Storage, 2022, 47: 103644/1-23.
|
[14] |
刘素贞, 袁路航, 张闯, 等. 基于超声时域特征及随机森林的磷酸铁锂电池荷电状态估计[J]. 电工技术学报, 2022, 37(22): 5872-5885. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202222021.htm
LIU S Z, YUAN L H, ZHANG C, et al. State of charge estimation of LiFeO4 batteries based on time domain features of ultrasonic waves and random forest[J]. Transactions of China Electrotechnical Society, 2022, 37(22): 5872-5885. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202222021.htm
|
[15] |
ROMAN D, SAXENA S, ROBU V, et al. Machine learning pipeline for battery state-of-health estimation[J]. Nature Machine Intelligence, 2021, 3(5): 447-456.
|
[16] |
ZHU J, DEWI DARMA M S, KNAPP M, et al. Investigation of lithium-ion battery degradation mechanisms by combining differential voltage analysis and alternating current impedance[J]. Journal of Power Sources, 2020, 448: 227575/1-12.
|
[17] |
周才杰, 汪玉洁, 李凯铨, 等. 基于灰色关联度分析-长短期记忆神经网络的锂离子电池健康状态估计[J]. 电工技术学报, 2022, 37(23): 6065-6073. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202223014.htm
ZHOU C J, WANG Y J, LI K Q, et al. State of health estimation for lithium-ion battery based on gray correlation analysis and long short-term memory neural network[J]. Transactions of China Electrotechnical Society, 2022, 37(23): 6065-6073. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202223014.htm
|
[18] |
LI X, WANG Z, ZHANG L, et al. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis[J]. Journal of Power Sources, 2019, 410/411: 106-114.
|
[19] |
LIN C P, CABRERA J, YANG F, et al. Battery state of health modeling and remaining useful life prediction through time series model[J]. Applied Energy, 2020, 275: 115338/1-12.
|