Processing math: 0%
  • Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
DA Juxia. The Existence of Three Symmetric Positive Solutions to A Fourth-Order Two-Point Boundary Value Problem[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 90-93. DOI: 10.6054/j.jscnun.2021014
Citation: DA Juxia. The Existence of Three Symmetric Positive Solutions to A Fourth-Order Two-Point Boundary Value Problem[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 90-93. DOI: 10.6054/j.jscnun.2021014

The Existence of Three Symmetric Positive Solutions to A Fourth-Order Two-Point Boundary Value Problem

More Information
  • Received Date: May 07, 2020
  • Available Online: March 23, 2021
  • Applying the generalized Leggett-Williams fixed-point theorem, the existence of positive solutions to the fourth-order boundary value problem is studied: u(4)(t)=f(u(t))     (t[0,1]),u(0)=u(1)=0,u, where f:\mathbb{R}\to \left[ 0, +\infty \right) is continuous. Under some conditions on f, there exist at least three symmetric positive solutions.
  • [1]
    周韶林, 吴红萍, 韩晓玲. 一类四阶三点边值问题正解的存在性[J]. 四川大学学报(自然科学版), 2014, 51(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201401003.htm

    ZHOU S L, WU H P, HAN X L. Existence of positive solutions of the fourth-order three-point boundary value problems[J]. Journal of Sichuan University(Natural Science Edition), 2014, 51(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201401003.htm
    [2]
    达举霞, 韩晓玲. 奇异四阶三点边值问题正解的存在性[J]. 四川大学学报(自然科学版), 2017, 54(3): 441-447. doi: 10.3969/j.issn.0490-6756.2017.03.001

    DA J X, HAN X L. Positive solutions of singular fourth-order three-point boundary value problem[J]. Journal of Sichuan University(Natural Science Edition), 2017, 54(3): 441-447. doi: 10.3969/j.issn.0490-6756.2017.03.001
    [3]
    AVERY R I, HENDERSON J. Three symmetric positive solutions for a second-order boundary value problem[J]. Applied Mathematics Letters, 2000, 13: 1-7. http://www.sciencedirect.com/science/article/pii/S0893965999001779
    [4]
    达佳丽, 韩晓玲. 三阶三点边值问题3个正解的存在性[J]. 华南师范大学学报(自然科学版), 2015, 47(3): 148-150. http://journal-n.scnu.edu.cn/article/id/3437

    DA J L, HAN X L. The existence of three positive solutions of third-order three-point boundary value problem[J]. Journal of South China Normal University(Natural Science Edition), 2015, 47(3): 148-150. http://journal-n.scnu.edu.cn/article/id/3437
    [5]
    陈剑, 曾泰山. 时间分数阶次扩散方程的多层扩充算法[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 106-110. doi: 10.6054/j.jscnun.2020051

    CHEN J, ZENG T S. Multi-layer extended algorithm for time fractional diffusion equation[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(3): 106-110. doi: 10.6054/j.jscnun.2020051
    [6]
    达举霞, 霍梅, 韩晓玲. 带变号格林函数的四阶三点边值问题的多个正解的存在性[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/article/id/3845

    DA J X, HUO M, HAN X L. The existence of multiple positive solutions to fourth-order three-point boundary value problems with changing sign Green's founction[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/article/id/3845
    [7]
    LI Y K, WANG L Y. Multiple positives solutions of nonlinear third-order boundary value problems with integral boundary conditions on times scales[J]. Advances in Difference Equations, 2015, 90: 1-8. doi: 10.1186/s13662-015-0442-6
    [8]
    PALAMIDES A P, GEORGE S. Positive solutions to a singular third-order three-point boundary value problem with an indefinitely signed Green's function[J]. Nonlinear Analysis, 2008, 68: 2014-2019.
    [9]
    ZHOU Y L, ZHANG X M. Existence of positive solutoins of fourth-order ompulsive differential equations with integral boundary condition[J]. Nonlinear Analysis, 2015, 2: 1-6.
    [10]
    WANG Y. Existence of multiple positive solutions for one-dimensional p-Laplacian[J]. Journal of Mathematical Analysis and Applications, 2006, 315: 144-153. doi: 10.1016/j.jmaa.2005.09.085
    [11]
    LIU Y J. Picard boundary value problems of second order p-Laplacian differential equations[J]. Chinese Quarterly Journal of Mathematics, 2011, 26(1): 77-84. http://www.cqvip.com/QK/97306X/201101/37879789.html
    [12]
    WU H Y, ZHANG J H. Positive solutions of higher-order four-point boundary value problem with Laplacian operator[J]. Journal of Computational and Applied Mathema-tics, 2010, 233(11): 2757-2766. doi: 10.1016/j.cam.2009.06.040
    [13]
    YANG X J, KIN Y, LO K. Periodic solutions for a gene-ralized p-Laplacian equation[J]. Applied Mathematics Letter, 2012, 25(3): 586-589. doi: 10.1016/j.aml.2011.09.064
    [14]
    AVERY R I, PETERSON A. Three positive fixed points of nonlinear operators on ordered Banach spaces[J]. Computers#38;Mathematics with Applications, 2001, 42(3/4/5): 313-322. http://www.ams.org/mathscinet-getitem?mr=542951
    [15]
    ZHAO J, MIAO C, GE W, et al. Multiple symmetric positive solutions to a new kind four point boundary value problem[J]. Nonlinear Analysis, 2009, 71: 9-18. http://www.ams.org/mathscinet-getitem?mr=2518007
    [16]
    AVERY R I. A generalization of the Leggett-Williams fixed-point theorem[J]. Mathematical Science Research Hot-Line, 1999, 3(7): 9-14. http://www.ams.org/mathscinet-getitem?mr=1702612
  • Cited by

    Periodical cited type(1)

    1. 李宪,达举霞,章欢. 四阶两点边值问题n个对称正解的存在性. 华南师范大学学报(自然科学版). 2024(01): 123-127 .

    Other cited types(0)

Catalog

    Article views (452) PDF downloads (55) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return