Citation: | DA Juxia. The Existence of Three Symmetric Positive Solutions to A Fourth-Order Two-Point Boundary Value Problem[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(1): 90-93. DOI: 10.6054/j.jscnun.2021014 |
[1] |
周韶林, 吴红萍, 韩晓玲. 一类四阶三点边值问题正解的存在性[J]. 四川大学学报(自然科学版), 2014, 51(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201401003.htm
ZHOU S L, WU H P, HAN X L. Existence of positive solutions of the fourth-order three-point boundary value problems[J]. Journal of Sichuan University(Natural Science Edition), 2014, 51(1): 11-15. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX201401003.htm
|
[2] |
达举霞, 韩晓玲. 奇异四阶三点边值问题正解的存在性[J]. 四川大学学报(自然科学版), 2017, 54(3): 441-447. doi: 10.3969/j.issn.0490-6756.2017.03.001
DA J X, HAN X L. Positive solutions of singular fourth-order three-point boundary value problem[J]. Journal of Sichuan University(Natural Science Edition), 2017, 54(3): 441-447. doi: 10.3969/j.issn.0490-6756.2017.03.001
|
[3] |
AVERY R I, HENDERSON J. Three symmetric positive solutions for a second-order boundary value problem[J]. Applied Mathematics Letters, 2000, 13: 1-7. http://www.sciencedirect.com/science/article/pii/S0893965999001779
|
[4] |
达佳丽, 韩晓玲. 三阶三点边值问题3个正解的存在性[J]. 华南师范大学学报(自然科学版), 2015, 47(3): 148-150. http://journal-n.scnu.edu.cn/article/id/3437
DA J L, HAN X L. The existence of three positive solutions of third-order three-point boundary value problem[J]. Journal of South China Normal University(Natural Science Edition), 2015, 47(3): 148-150. http://journal-n.scnu.edu.cn/article/id/3437
|
[5] |
陈剑, 曾泰山. 时间分数阶次扩散方程的多层扩充算法[J]. 华南师范大学学报(自然科学版), 2020, 52(3): 106-110. doi: 10.6054/j.jscnun.2020051
CHEN J, ZENG T S. Multi-layer extended algorithm for time fractional diffusion equation[J]. Journal of South China Normal University(Natural Science Edition), 2020, 52(3): 106-110. doi: 10.6054/j.jscnun.2020051
|
[6] |
达举霞, 霍梅, 韩晓玲. 带变号格林函数的四阶三点边值问题的多个正解的存在性[J]. 华南师范大学学报(自然科学版), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/article/id/3845
DA J X, HUO M, HAN X L. The existence of multiple positive solutions to fourth-order three-point boundary value problems with changing sign Green's founction[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(3): 109-113. http://journal-n.scnu.edu.cn/article/id/3845
|
[7] |
LI Y K, WANG L Y. Multiple positives solutions of nonlinear third-order boundary value problems with integral boundary conditions on times scales[J]. Advances in Difference Equations, 2015, 90: 1-8. doi: 10.1186/s13662-015-0442-6
|
[8] |
PALAMIDES A P, GEORGE S. Positive solutions to a singular third-order three-point boundary value problem with an indefinitely signed Green's function[J]. Nonlinear Analysis, 2008, 68: 2014-2019.
|
[9] |
ZHOU Y L, ZHANG X M. Existence of positive solutoins of fourth-order ompulsive differential equations with integral boundary condition[J]. Nonlinear Analysis, 2015, 2: 1-6.
|
[10] |
WANG Y. Existence of multiple positive solutions for one-dimensional p-Laplacian[J]. Journal of Mathematical Analysis and Applications, 2006, 315: 144-153. doi: 10.1016/j.jmaa.2005.09.085
|
[11] |
LIU Y J. Picard boundary value problems of second order p-Laplacian differential equations[J]. Chinese Quarterly Journal of Mathematics, 2011, 26(1): 77-84. http://www.cqvip.com/QK/97306X/201101/37879789.html
|
[12] |
WU H Y, ZHANG J H. Positive solutions of higher-order four-point boundary value problem with Laplacian operator[J]. Journal of Computational and Applied Mathema-tics, 2010, 233(11): 2757-2766. doi: 10.1016/j.cam.2009.06.040
|
[13] |
YANG X J, KIN Y, LO K. Periodic solutions for a gene-ralized p-Laplacian equation[J]. Applied Mathematics Letter, 2012, 25(3): 586-589. doi: 10.1016/j.aml.2011.09.064
|
[14] |
AVERY R I, PETERSON A. Three positive fixed points of nonlinear operators on ordered Banach spaces[J]. Computers#38;Mathematics with Applications, 2001, 42(3/4/5): 313-322. http://www.ams.org/mathscinet-getitem?mr=542951
|
[15] |
ZHAO J, MIAO C, GE W, et al. Multiple symmetric positive solutions to a new kind four point boundary value problem[J]. Nonlinear Analysis, 2009, 71: 9-18. http://www.ams.org/mathscinet-getitem?mr=2518007
|
[16] |
AVERY R I. A generalization of the Leggett-Williams fixed-point theorem[J]. Mathematical Science Research Hot-Line, 1999, 3(7): 9-14. http://www.ams.org/mathscinet-getitem?mr=1702612
|
1. |
李宪,达举霞,章欢. 四阶两点边值问题n个对称正解的存在性. 华南师范大学学报(自然科学版). 2024(01): 123-127 .
![]() |