• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
ZHAO Ruirui, LIANG Jiaxing, YANG Zhilian, LIANG Changcheng, CUAN Xiongcong, GAO Aimei, CHEN Hongyu. Synthesis and Investigation of the nanocrystalline Li1.2Ni0.2Mn0.6O2 cathodes for Li-ion batteries by using ultrasonic/microwave-assisted co-precipitation method with different ultrasonic time[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(2): 6-10. DOI: 10.6054/j.jscnun.2017104
Citation: ZHAO Ruirui, LIANG Jiaxing, YANG Zhilian, LIANG Changcheng, CUAN Xiongcong, GAO Aimei, CHEN Hongyu. Synthesis and Investigation of the nanocrystalline Li1.2Ni0.2Mn0.6O2 cathodes for Li-ion batteries by using ultrasonic/microwave-assisted co-precipitation method with different ultrasonic time[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(2): 6-10. DOI: 10.6054/j.jscnun.2017104

Synthesis and Investigation of the nanocrystalline Li1.2Ni0.2Mn0.6O2 cathodes for Li-ion batteries by using ultrasonic/microwave-assisted co-precipitation method with different ultrasonic time

More Information
  • Received Date: December 18, 2015
  • Revised Date: December 24, 2015
  • A series of nanocrystalline lithium-rich cathode materials (Li1.2Ni0.2Mn0.6O2) have been prepared via an ultrasonic/microwave-assisted co-precipitation method. The effects of the ultrasonic time are emphasis investigated by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy and electrochemical measurements. The optimum reaction time is 2h, while the sample can exhibit the best electrochemical properties with an initial discharge capacity of 265mAh.g-1 at 0.1C and 180mAh-1 at 2C after 90 cycles, respectively. The superior electrochemical performance of this material can be attributed to the uniform particles, desired element distribution and high activities of the redox couples in the bulk material. This study also suggests that the ultrasonic/microwave system can be a good assistant in the practical Li-rich material production, while it can be easy to use and time-saving.
  • [1]M.M. Trackeray, C.S. Johnson, J.T. Vaughey, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries [J]. J. Mater. Chem. 15 (2005) 2257-2267. DOI: 10.1039/B417616M
    [2]M.M. Trackeray, S.H. Kang, C.S. Johnson, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion Batteries [J].J. Mater. Chem. 17 (2007) 3112-3125. DOI: 10.1039/b702425h
    [3]C.S. Johnson, J.S. Kim, C. Lefief, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3?(1-x)LiMn0.5Ni0.5O2 electrode[J]. Electrochem.Commun.6(2004)1085-1091. DOI:10.1016/j.elecom.2004.08.002
    [4]D.K. Lee, S. H. Park, K. Amine, et al. High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method [J]. J. Power Sources, 162 (2006) 1346-1350. DOI:10.1016/j.jpowsour.2006.07.064
    [5]F. Wu, X.X. Zhang, T.L. Zhao, et al. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries [J].ACS Appl. Mater. Interfaces 7 (2015) 3773-3781. DOI: 10.1021/am508579r
    [6]J. Ma, B. Li, L. An, et al. A highly homogeneous nanocoating strategy for Li-rich Mn-based layered oxides based on chemical conversion [J]. J. Power Sources 277 (2015) 393-402.DOI:10.1016/j.jpowsour.2014.11.133
    [7]T.L. Zhao, S. Chen, R.J. Chen, et al. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries.[J].ACS Appl. Mater. Interfaces 6 (2014), 21711-21720.DOI: 10.1021/am506934j
    [8]M. Y. Hou, J.L. Liu, S.S. Guo,et al. Enhanced electrochemical performance of Li-rich layered cathode materials by surface modification with P2O5[J]. Electrochem. Commun. 49 (2014) 83-87. DOI:10.1016/j.elecom.2014.10.009
    [9]D.H. Cho, H. Yashiro, Y.K. Sun, et al. Electrochemical Properties of Polyaniline-Coated Li-Rich Nickel Manganese Oxide and Role of Polyaniline Coating Layer[J]. J. Electrochem. Soc. 161 (2014) A142-A148. DOI: 10.1149/2.073401jes
    [10]I.T. Kim, J. C. Knight, H. Celio,et al. Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating [J]. J. Mater. Chem. A2 (2014) 8696-8704. DOI: 10.1039/C4TA00898G
    [11]Y.K. Sun, M.G. Kim, S.H. Kang,et al. Electrochemical performance of layered Li[Li0.15Ni0.2752xMgxMn0.575]O2 cathode materials for lithium secondary batteries [J]. J. Mater. Chem. 13 (2003) 319-322. DOI: 10.1039/B209379K
    [12]C.W. Lee, Y.K. Sun, J. Prakash. A novel layered Li [Li0.12NizMg0.32?zMn0.56]O2 cathode material for lithium-ion batteries. [J]. Electrochim. Acta 49 (2004) 4425-4432.DOI:10.1016/j.electacta.2004.04.033
    [13] S.H. Kang, J. Kim, M. E. Stoll, et al. Layered Li(Ni0.5?xMn0.5?xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries. [J]. J. Power Sources 112 (2002) 41-48. DOI:10.1016/S0378-7753(02)00360-9
    [14]C. J. Jafta, K. I. Ozoemena, M. K. Mathe,et al. Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery [J].Electrochim. Acta 85 (2012) 411-422. DOI:10.1016/j.electacta.2012.08.074
    [15]J. Wilcox, S. Patoux, M. Doeff. Structure and Electrochemistry of LiNi1/3Co1/3-yMyMn1/3O2 (M=Ti, Al, Fe) Positive Electrode Materials. [J]. J. Electrochem. Soc. 156 (2009) A192-A198. DOI:10.1149/1.3056109
    [16]L. Li, B.H. Song, Y.L. Chang,et al. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material[J]. J. Power Sources 283 (2015) 162-170. DOI:10.1016/j.jpowsour.2015.02.085
    [17]Z.H. Lu, J. R. Dahn. Understanding the Anomalous Capacity of Li / Li [ Ni x Li ( 1 / 3 ? 2x / 3 ) Mn ( 2 / 3 ? x / 3 ) ] O 2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies[J]. J. Electrochem. Soc. 149 (2002) A815-A822. DOI:10.1149/1.1480014
    [18]M.G. Kim, M. Jo, Y.S. Hong, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode [J].Chem. Commun. 2 (2009) 218-220. DOI: 10.1039/b815378g
    [19]R.R. Zhao, Z.J. Chen, Y. Zhang, et al. Ultrasonic/microwave-assisted co-precipitation method in the synthesis of Li1.1Mn0.433Ni0.233Co0.233O2 cathode material for lithium-ion batteries[J].Mater. Lett. 136 (2014) 160-163. DOI:10.1016/j.matlet.2014.08.060
    [20]R.R. Zhao, I.M. Hung, Y.T. Li, et al. Synthesis and properties of Co-doped LiFePO4 as cathode material via a hydrothermal route for lithium-ion batteries [J] J.Alloys Compd. 513 (2012) 282-288. DOI:10.1016/j.jallcom.2011.10.037
    [21]I. Belharouak, G.M. Koenig Jr., J. Ma, et al. Identification of LiNi0.5Mn1.5O4 spinel in layered manganese enriched electrode materials [J].Electrochem. Commun. 13 (201) 232-236. DOI:10.1016/j.elecom.2010.12.021
    [22]L.J. Zhang, B.R. Wu, N. Li, et al. Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries. [J].J. Power Sources, 240 (2013) 644-652. DOI:10.1016/j.jpowsour.2013.05.019

    [1]M.M. Trackeray, C.S. Johnson, J.T. Vaughey, et al. Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries [J]. J. Mater. Chem. 15 (2005) 2257-2267. DOI: 10.1039/B417616M
    [2]M.M. Trackeray, S.H. Kang, C.S. Johnson, et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion Batteries [J].J. Mater. Chem. 17 (2007) 3112-3125. DOI: 10.1039/b702425h
    [3]C.S. Johnson, J.S. Kim, C. Lefief, et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3?(1-x)LiMn0.5Ni0.5O2 electrode[J]. Electrochem.Commun.6(2004)1085-1091. DOI:10.1016/j.elecom.2004.08.002
    [4]D.K. Lee, S. H. Park, K. Amine, et al. High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method [J]. J. Power Sources, 162 (2006) 1346-1350. DOI:10.1016/j.jpowsour.2006.07.064
    [5]F. Wu, X.X. Zhang, T.L. Zhao, et al. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries [J].ACS Appl. Mater. Interfaces 7 (2015) 3773-3781. DOI: 10.1021/am508579r
    [6]J. Ma, B. Li, L. An, et al. A highly homogeneous nanocoating strategy for Li-rich Mn-based layered oxides based on chemical conversion [J]. J. Power Sources 277 (2015) 393-402.DOI:10.1016/j.jpowsour.2014.11.133
    [7]T.L. Zhao, S. Chen, R.J. Chen, et al. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries.[J].ACS Appl. Mater. Interfaces 6 (2014), 21711-21720.DOI: 10.1021/am506934j
    [8]M. Y. Hou, J.L. Liu, S.S. Guo,et al. Enhanced electrochemical performance of Li-rich layered cathode materials by surface modification with P2O5[J]. Electrochem. Commun. 49 (2014) 83-87. DOI:10.1016/j.elecom.2014.10.009
    [9]D.H. Cho, H. Yashiro, Y.K. Sun, et al. Electrochemical Properties of Polyaniline-Coated Li-Rich Nickel Manganese Oxide and Role of Polyaniline Coating Layer[J]. J. Electrochem. Soc. 161 (2014) A142-A148. DOI: 10.1149/2.073401jes
    [10]I.T. Kim, J. C. Knight, H. Celio,et al. Enhanced electrochemical performances of Li-rich layered oxides by surface modification with reduced graphene oxide/AlPO4 hybrid coating [J]. J. Mater. Chem. A2 (2014) 8696-8704. DOI: 10.1039/C4TA00898G
    [11]Y.K. Sun, M.G. Kim, S.H. Kang,et al. Electrochemical performance of layered Li[Li0.15Ni0.2752xMgxMn0.575]O2 cathode materials for lithium secondary batteries [J]. J. Mater. Chem. 13 (2003) 319-322. DOI: 10.1039/B209379K
    [12]C.W. Lee, Y.K. Sun, J. Prakash. A novel layered Li [Li0.12NizMg0.32?zMn0.56]O2 cathode material for lithium-ion batteries. [J]. Electrochim. Acta 49 (2004) 4425-4432.DOI:10.1016/j.electacta.2004.04.033
    [13] S.H. Kang, J. Kim, M. E. Stoll, et al. Layered Li(Ni0.5?xMn0.5?xM2x′)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries. [J]. J. Power Sources 112 (2002) 41-48. DOI:10.1016/S0378-7753(02)00360-9
    [14]C. J. Jafta, K. I. Ozoemena, M. K. Mathe,et al. Synthesis, characterisation and electrochemical intercalation kinetics of nanostructured aluminium-doped Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery [J].Electrochim. Acta 85 (2012) 411-422. DOI:10.1016/j.electacta.2012.08.074
    [15]J. Wilcox, S. Patoux, M. Doeff. Structure and Electrochemistry of LiNi1/3Co1/3-yMyMn1/3O2 (M=Ti, Al, Fe) Positive Electrode Materials. [J]. J. Electrochem. Soc. 156 (2009) A192-A198. DOI:10.1149/1.3056109
    [16]L. Li, B.H. Song, Y.L. Chang,et al. Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13Co0.13O2 cathode material[J]. J. Power Sources 283 (2015) 162-170. DOI:10.1016/j.jpowsour.2015.02.085
    [17]Z.H. Lu, J. R. Dahn. Understanding the Anomalous Capacity of Li / Li [ Ni x Li ( 1 / 3 ? 2x / 3 ) Mn ( 2 / 3 ? x / 3 ) ] O 2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies[J]. J. Electrochem. Soc. 149 (2002) A815-A822. DOI:10.1149/1.1480014
    [18]M.G. Kim, M. Jo, Y.S. Hong, et al. Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode [J].Chem. Commun. 2 (2009) 218-220. DOI: 10.1039/b815378g
    [19]R.R. Zhao, Z.J. Chen, Y. Zhang, et al. Ultrasonic/microwave-assisted co-precipitation method in the synthesis of Li1.1Mn0.433Ni0.233Co0.233O2 cathode material for lithium-ion batteries[J].Mater. Lett. 136 (2014) 160-163. DOI:10.1016/j.matlet.2014.08.060
    [20]R.R. Zhao, I.M. Hung, Y.T. Li, et al. Synthesis and properties of Co-doped LiFePO4 as cathode material via a hydrothermal route for lithium-ion batteries [J] J.Alloys Compd. 513 (2012) 282-288. DOI:10.1016/j.jallcom.2011.10.037
    [21]I. Belharouak, G.M. Koenig Jr., J. Ma, et al. Identification of LiNi0.5Mn1.5O4 spinel in layered manganese enriched electrode materials [J].Electrochem. Commun. 13 (201) 232-236. DOI:10.1016/j.elecom.2010.12.021
    [22]L.J. Zhang, B.R. Wu, N. Li, et al. Rod-like hierarchical nano/micro Li1.2Ni0.2Mn0.6O2 as high performance cathode materials for lithium-ion batteries. [J].J. Power Sources, 240 (2013) 644-652. DOI:10.1016/j.jpowsour.2013.05.019
  • Related Articles

    [1]LIU Xiaohong, LIANG Jie, CHEN Changjun, HUANG Wei, LIAO Kaiyu. Microwave Electric Field Measurement Based on Electromagnetically-Induced Transparency and Absorption in Atomic Vapor Cell at Room Temperature[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 10-16. DOI: 10.6054/j.jscnun.2020037
    [2]CHEN Wenshuo, MENG Yaoyong, GU Fenglong. Theoretical and Experimental Studies of Raman Spectroscopy of Barium Strontium Titanate[J]. Journal of South China Normal University (Natural Science Edition), 2019, 51(6): 18-23. DOI: 10.6054/j.jscnun.2019098
    [3]LIU Lingling, LIU Junguang, JIA Zhenzhen, HUANG renlong, SHU Yuehong. Flocculation Performance of Graphene Oxide for Removal of Methylene Blue from Water[J]. Journal of South China Normal University (Natural Science Edition), 2018, 50(4): 55-61. DOI: 10.6054/j.jscnun.2018078
    [4]Wu Xiuping, Song Haiyan, Tan Jun, Wu Guowei, Gao Zhizhong, Gan Shuzhao. Spectroscopic Characterization of Dissolved Organic Matter Isolated from Rainwater[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(4): 74-79. DOI: 10.6054/j.jscnun.2014.12.049
    [5]ChiraSac Study on Chiral Spectroscopy and Photobiology[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(6): 141-141.
    [6]Anharmonic and damped oscillators on Franck-Condon factors with application to molecular electronic spectroscopy[J]. Journal of South China Normal University (Natural Science Edition), 2014, 46(6): 140-140.
    [7]DETERMINATION OF RHODIUM BY FLAME ATOMIC ABSORPTION SPECTROMETRY[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(5).
    [8]HYDROTHERMAL SYNTHESIS, CHARACTERIZATION AND PHOTOCATALYTIC PROPERTIES OF NiO NANO-CATALYST[J]. Journal of South China Normal University (Natural Science Edition), 2013, 45(1). DOI: 10.6054/j.jscnun.2012.12.012
    [9]ULTRASOUND ASSISTED DEGRADATION OF METHYLENE BLUE BY FENTON/Co2+ SYSTEM IN THE PRESENCE OF Zn(Al)O[J]. Journal of South China Normal University (Natural Science Edition), 2012, 44(1).
    [10]ADSORPTION OF METHYLENE BLUE FROM AQUEOUS SOLUTION ONTO CARBON NANOTUBES AND ITS THERMODYNAMICS[J]. Journal of South China Normal University (Natural Science Edition), 2011, 0(1).

Catalog

    Article views (1448) PDF downloads (253) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return