• Overview of Chinese core journals
  • Chinese Science Citation Database(CSCD)
  • Chinese Scientific and Technological Paper and Citation Database (CSTPCD)
  • China National Knowledge Infrastructure(CNKI)
  • Chinese Science Abstracts Database(CSAD)
  • JST China
  • SCOPUS
LIU Xiaohong, LIANG Jie, CHEN Changjun, HUANG Wei, LIAO Kaiyu. Microwave Electric Field Measurement Based on Electromagnetically-Induced Transparency and Absorption in Atomic Vapor Cell at Room Temperature[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 10-16. DOI: 10.6054/j.jscnun.2020037
Citation: LIU Xiaohong, LIANG Jie, CHEN Changjun, HUANG Wei, LIAO Kaiyu. Microwave Electric Field Measurement Based on Electromagnetically-Induced Transparency and Absorption in Atomic Vapor Cell at Room Temperature[J]. Journal of South China Normal University (Natural Science Edition), 2020, 52(3): 10-16. DOI: 10.6054/j.jscnun.2020037

Microwave Electric Field Measurement Based on Electromagnetically-Induced Transparency and Absorption in Atomic Vapor Cell at Room Temperature

More Information
  • Received Date: October 14, 2019
  • Available Online: March 21, 2021
  • The traceability of microwave electric field is measured based on the Rydberg atomic quantum interference effect. The rubidium atomic vapor cell at room temperature is used as the probe, and the Autler-Townes splitting of two-photon electromagnetically-induced transparency, three-photon electromagnetically-induced transparency and three-photon electromagnetically-induced absorption effect are analyzed theoretically. The measurement limit of atomic shot noise is also discussed. This method is not only suitable for the traceability and self-calibration measurement of the microwave electric field but also for the sub-wavelength imaging and vector measurement of the microwave electric field and will provide a reference for further miniaturization and integration of the atomic microwave probe.
  • [1]
    OSTERWALDER A, MERKT F. Using high Rydberg states as electric field sensors[J]. Physical Review Letters, 1999, 82(9):1831-1834. doi: 10.1103/PhysRevLett.82.1831
    [2]
    SEDLACEK J A, SCHWETTMANN A, KVBLER H, et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 2012, 8(11):819-824. doi: 10.1038/nphys2423
    [3]
    GORDON J A, HOLLLOWAY C L, SCHWARZKOPF A, et al. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms[J]. Applied Physics Letters, 2014, 105(2):1683/1-5. http://cn.bing.com/academic/profile?id=23a072a6498686a956dff5a4b1112349&encoded=0&v=paper_preview&mkt=zh-cn
    [4]
    ANDERSON D A, MILLER S A, GORDON J A, et al. Optical measurements of srong microwave fields with Rydberg atoms in a vapor cell[J]. Physical Review A, 2016, 5(3):034003/1-7. doi: 10.1103/PhysRevApplied.5.034003
    [5]
    SIRKO L, ARNDT M, KOCH P M, et al. Microwave ionization of Rb Rydberg atoms:frequency dependence[J]. Physical Review A, 1994, 49(5):3831-3841. doi: 10.1103/PhysRevA.49.3831
    [6]
    JIAO Y, HAO L, HAN X, et al. Floquet States[J]. Physical Review Applied, 2017, 8(1):014028/1-7. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0226059951/
    [7]
    JOHNSON L A M, MAJEED H O, SANGUINETTI B, et al. Absolute frequency measurements of 85Rb nF7/2 Rydberg states using purely optical detection[J]. New Journal of Physics, 2010, 12(6):063028/1-12. doi: 10.1088/1367-2630/12/6/063028
    [8]
    CARR C, TANASITTIKOSOL M, SARGSYAN A, et al. Three-photon electromagnetically induced transparency using Rydberg states:erratum[J]. Optics Letters, 2012, 37(18):3858-3860. doi: 10.1364/OL.37.003858
    [9]
    SHAFFER J P, KVBLER H. Electromagnetically-induced transparency, absorption, and microwave field sensing in a Rb vapor cell with a three-color all-infrared laser system[J]. Physical Review A, 2019, 100(6):063427/1-9. doi: 10.1103/PhysRevA.100.063427
    [10]
    GALLAGHER T F. Rydberg Atoms[M]. Cambridge:Cambridge University Press, 1994.
    [11]
    ANDREWS D L. Introduction to Quantum optics:from the semi-classical approach to quantized light, by Gilbert Grynberg, Alain aspect and claude fabre[J]. Contemporary Physics, 2011, 52(6):627-628. doi: 10.1080/00107514.2011.604134
    [12]
    ZHANG Z M. Quantum Optics[M]. Beijing:Science Press, 2012:233.
    [13]
    BORN M, WOLF E. Principles of optics electromagnetic theory of propagation, interference and diffraction of light[J]. Physics Today, 2000, 53(10):77-78. http://cn.bing.com/academic/profile?id=09befc06e406434e466d623dddb03480&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    ŠIBALI C ' N, ADAMS C S. Rydberg Physics[M]. Bristol:IOP Publishing, 2018.
    [15]
    BERMAN P R, MALINOVSKY V S. Principles of laser spectroscopy and quantum optics[M].Princeton:Princeton University Press, 2011.
    [16]
    KITCHING J, KNAPPE S, DONLEY E A. Atomic sensors-a review[J]. IEEE Sensors Journal, 2011, 11(9):1749-1758. doi: 10.1109/JSEN.2011.2157679

Catalog

    Article views (1664) PDF downloads (143) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return