Citation: | ZHAO Zejia, TUO Haorui, XIE Xiangta, CHEN Jian, HAN Songlei, ZHAO Xiaoqing, LIU Xueming. Research on Characteristics of Carbon Emissions in Medium-sized Urban Sewage Treatment Plants Using Improved A2O Processes[J]. Journal of South China Normal University (Natural Science Edition), 2024, 56(1): 63-71. DOI: 10.6054/j.jscnun.2024008 |
The carbon-emission-factor approach was used to conduct the total carbon emissions and carbon emission intensity of 4 medium-sized sewage treatment plants with similar scale but different A2O processes in Shantou. The results show that the total carbon emissions with different A2O processes are different. The total carbon emission intensity of the 4 sewage treatment plants ranged from 0.317 to 0.402 kg/m3(CO2-eq). The carbon emissions in order from smallest to largest based on the processing are: multi-stage AO, A2O+anaerobic/hypoxia regulating tank, traditional A2O, A2O+micro-aeration oxidation ditch. However, the carbon emission categories of different processes are similar, and electricity consumption is the most important carbon emission source for each process. Compared with the traditional A2O process, the other three improved A2O processes have advantages in reducing carbon emission intensity of chemicals consumption, CH4 emission, N2O emission and sludge disposal. And the multi-stage AO process shows the greatest ability to reduce the total carbon intensity. Based on the above results, some suggestions for the carbon emission optimization of the improved A2O processes were put forward.
[1] |
LU H, WANG H, WU Q, et al. Automatic control and optimal operation for greenhouse gas mitigation in sustainable wastewater treatment plants: a review[J]. Science of the Total Environment, 2023, 855: 158849/1-14.
|
[2] |
BAO Z Y, SUN S C, SUN D Z. Assessment of greenhouse gas emission from A/O and SBR wastewater treatment plants in Beijing, China[J]. International Biodeterioration & Biodegradation, 2016, 108: 108-114.
|
[3] |
KUO G, YANG H, ZHAO Q L, et al. Identification of key basic parameters involved in carbon emissions in full-scale wastewater treatment plants[J]. Sustainability, 2023, 15(9): 7225-7237. doi: 10.3390/su15097225
|
[4] |
郭清杨, 祁峰, 母锐敏, 等. 污水处理厂碳排放研究进展[J]. 市政技术, 2023, 41(2): 190-197. https://www.cnki.com.cn/Article/CJFDTOTAL-SZJI202302030.htm
|
[5] |
2020年建设统计数据(污排水部分)发布[J]. 净水技术, 2021, 40(12): 126-126.
|
[6] |
刘操. 城镇污水处理及再生利用工艺手册[M]. 北京: 中国环境科学出版社, 2015.
|
[7] |
褚俊英, 陈吉宁, 邹骥, 等. 城市污水处理厂的规模与效率研究[J]. 中国给水排水, 2004(5): 35-38. https://www.cnki.com.cn/Article/CJFDTOTAL-GSPS200405010.htm
|
[8] |
董文福, 傅德黔. 我国城市污水处理厂现状、存在问题及对策研究[J]. 环境科学导刊, 2008(3): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YNHK200803013.htm
|
[9] |
章诗璐, 陈悦, 崔朋, 等. 城镇污水厂新兴强化生化处理工艺综述[J]. 净水技术, 2023, 42(7): 40-48;175. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS202307006.htm
|
[10] |
俞勇, 喻盛华, 陈达钢. 浙江省城镇污水处理厂清洁排放技术改造的实践与思考[J]. 环境工程, 2020, 38(7): 19-24. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC202007003.htm
|
[11] |
KAPAGIANNIDIS A G, ZAFIRIADIS I, AIVASIDIS A. Upgrading the efficiency of an external nitrification BNR system-The modified Dephanox process[J]. Chemical Engineering Journal, 2011, 175: 124-135. doi: 10.1016/j.cej.2011.09.080
|
[12] |
叶长兵, 周志明, 吕伟, 等. A2O污水处理工艺研究进展[J]. 中国给水排水, 2014, 30(15): 135-138. https://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201415042.htm
|
[13] |
冉治霖, 田文德, 相会强. 一种改良型A2O工艺脱氮除磷的影响因素研究[J]. 环境工程, 2018, 36(6): 63-67. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201806014.htm
|
[14] |
孟红旗, 李红霞, 赵爱平, 等. 市政污水处理厂典型A2O工艺低碳运行的系统性评估[J]. 环境科学, 2023, 44(2): 1174-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ202302048.htm
|
[15] |
孙强强, 罗凡, 杜至力, 等. 不同生化工艺小城镇污水处理厂碳排放特征研究[J]. 广东化工, 2023, 50(13): 160-163;144. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG202313042.htm
|
[16] |
LI Y, GU H, ZHAO G, et al. Carbon accounting of A2O process based on carbon footprint in a full-scale municipal wastewater treatment plant[J]. Journal of Water Process Engineering, 2023, 55: 104162/1-15.
|
[17] |
陈海燕, 陈卫东, 邓东明. 污水处理厂处理工艺比选问题及运行效果分析[J]. 节能与环保, 2021(4): 91-93. https://www.cnki.com.cn/Article/CJFDTOTAL-BJJN202104038.htm
|
[18] |
IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Japan: IGES, 2006.
|
[19] |
TSENG L Y, ROBINSON A K, ZHANG X, et al. Identification of preferential paths of fossil carbon within water resource recovery facilities via radiocarbon analysis[J]. Environmental Science & Technology, 2016, 50(22): 12166-12178.
|
[20] |
中国城镇供水排水协会. 城镇水务系统碳核算与减排路径[M]. 北京: 中国建筑工业出版社, 2022.
|
[21] |
中华人民共和国生态环境部. 2019年度减排项目中国区域电网基准线排放因子[R]. 2019.
|
[22] |
闫旭, 邱德志, 郭东丽, 等. 中国城镇污水处理厂温室气体排放时空分布特征[J]. 环境科学, 2018, 39(3): 1256-1263. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201803035.htm
|
[23] |
CHURCH J, CLARK P, CAZENAVE A, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group Ⅰ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Seiten: Cambridge University Press, 2013.
|
[24] |
蔡博峰, 高庆先, 李中华, 等. 中国城市污水处理厂甲烷排放因子研究[J]. 中国人口·资源与环境, 2015, 25(4): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGRZ201504015.htm
|
[25] |
国家环境保护局. 大气污染物综合排放标准: GB 16297-1996[S]. 北京: 中国环境出版社, 1996.
|
[26] |
王曦溪, 李振山. 1998—2008年我国废水污水处理的碳排量估算[J]. 环境科学, 2012, 32(7): 1764-1776. https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201207031.htm
|
[27] |
周兴, 郑有飞, 吴荣军, 等. 2003—2009年中国污水处理部门温室气体排放研究[J]. 气候变化研究进展, 2012, 8(2): 131-136. https://www.cnki.com.cn/Article/CJFDTOTAL-QHBH201202011.htm
|
[28] |
呼永锋, 梁梅, 张永祥, 等. A2O+MBR工艺运行效果与碳排放特征研究[J]. 中国环境科学, 2021, 41(9): 4439-4446. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHJ202109056.htm
|
[29] |
鲍志远. 典型城市污水处理工艺温室气体排放特征及减排策略研究[D]. 北京: 北京林业大学, 2020.
|
[30] |
郑思远. 城镇污水处理厂碳排放研究[J]. 农业与技术, 2023, 43(1): 80-82. https://www.cnki.com.cn/Article/CJFDTOTAL-NYYS202301021.htm
|
[31] |
叶从容. 微曝氧化沟除磷工艺运行状况研究[J]. 水处理技术, 2009, 35(1): 97-99. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ200901027.htm
|
[32] |
周曼. 某污水处理厂碳排放核算研究[J]. 广东化工, 2022, 49(5): 132-134. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG202205040.htm
|
[33] |
郑思伟, 唐伟, 徐海岚, 等. 城市污水处理厂甲烷排放量估算及控制对策研究[J]. 水处理技术, 2016, 42(12): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLJ201612017.htm
|
[34] |
吴光学, 时运红, 魏楠, 等. 外加常规碳源污水反硝化脱氮研究进展[J]. 给水排水, 2014, 50: 168-172. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJS2014S1056.htm
|
[35] |
GEORGE T. Wastewater Engineering: Treatment and Reuse[M]. New York: McGraw Hill Education, 2014.
|
[36] |
吴静仪, 叶志平, 随文琪. 污泥的生物干化及其热值变化[J]. 华南师范大学学报(自然科学版), 2015, 47(3): 80-85. doi: 10.6054/j.jscnun.2014.12.025
WU J Y, YE Z P, SUI W Q. Bio-drying of dewatered sludge and changes of calorific value[J]. Journal of South China Normal University (Natural Science Edition), 2015, 47(3): 80-85. doi: 10.6054/j.jscnun.2014.12.025
|
[37] |
ZHANG Q Z, YANG Y X, ZHANG X C, et al. Carbon neutral and techno-economic analysis for sewage treatment plants[J]. Environmental Technology & Innovation, 2022, 26: 102302/1-16.
|
[38] |
郭恰. 城市污水处理厂污泥处理处置过程中碳排放核算边界浅析[J]. 净水技术, 2019, 38(10): 131-134. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSJS201910028.htm
|
1. |
向岑,陈时熠. 污水处理厂碳排放核算与碳减排措施的综述. 环境科技. 2025(01): 68-73 .
![]() | |
2. |
乔明,于淼,孙雁伯,王延涛,周立峰,仝坤,董林林. 油田采出水外排处理厂碳排放核算方法及碳减排路径研究. 给水排水. 2024(07): 78-84+114 .
![]() |