Citation: | ZENG Zhihong, HONG Yong, ZHANG Ranran, TIAN Delu. The Adaptation Parameter Conditions for Hilbert-type Integral Inequalities with Quasi-homogeneous Kernels[J]. Journal of South China Normal University (Natural Science Edition), 2021, 53(5): 108-112. DOI: 10.6054/j.jscnun.2021082 |
[1] |
XU L Z, GAO Y K. Note on Hardy-Riesz's extension of Hilbert's inequality[J]. Chinese Quarterly Journal Mathematics, 1991, 6(1): 75-77. http://www.researchgate.net/publication/285632835_Note_on_Hardy-Riesz's_extension_of_Hilbert's_inequality
|
[2] |
KUANG J C. On new extensions of Hilbert's integral inequality[J]. Journal of Mathematical Analysis and Applications, 1999, 235: 68-614. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.626.1178&rep=rep1&type=pdf
|
[3] |
YANG B C. On new generalizations of Hilbert's inequality[J]. Journal of Mathematical Analysis and Applications, 2000, 284: 29-40. http://www.sciencedirect.com/science/article/pii/S0022247X00967660
|
[4] |
洪勇. 关于零阶齐次核的Hardy-Hilbert型不等式[J]. 浙江大学学报(理学版), 2013, 40(1): 15-18. doi: 10.3785/j.issn.1008-9497.2013.01.004
HONG Y. On Hardy-Hilbert type integral inequality with homogeneous kernel of 0-degree[J]. Journal of Zhejiang University(Science Edition), 2013, 40(1): 15-18. doi: 10.3785/j.issn.1008-9497.2013.01.004
|
[5] |
杨必成. 一个新的Hilbert型不等式及其推广[J]. 吉林大学学报(理学版), 2005, 43(5): 580-584. doi: 10.3321/j.issn:1671-5489.2005.05.005
YANG B C. A new Hilbert-type integral inequality and its generalization[J]. Journal of Jilin University (Science Edition), 2005, 43(5): 580-584. doi: 10.3321/j.issn:1671-5489.2005.05.005
|
[6] |
高明哲. 关于Hardy-Riesz拓广的Hilbert不等式的一个改进[J]. 数学研究与评论, 1994, 14(2): 255-259. https://www.cnki.com.cn/Article/CJFDTOTAL-SXYJ402.019.htm
GAO M Z. An improvement of Hardy-Riesz's extension of the Hilbert inequality[J]. Journal of Mathematical Research and Exposition, 1994, 14(2): 255-259. https://www.cnki.com.cn/Article/CJFDTOTAL-SXYJ402.019.htm
|
[7] |
BRNETIC I, PECARIC J. Generalization of inequality of Hardy-Hilbert's type[J]. Mathematical Inequalities & Applications, 2004, 7(2): 217-225. http://pdfs.semanticscholar.org/95a9/60bd4b071be53053e7ed0cbfee7fbc9c51cb.pdf
|
[8] |
杨必成. 关于一个推广的Hardy-Hilbert不等式[J]. 数学年刊, 2002, 23A(2): 247-254. doi: 10.3321/j.issn:1000-8134.2002.02.014
YANG B C. On an extension of Hardy-Hilbert's inequality[J]. Chinese Annals of Mathematics, 2002, 23A(2): 247-254. doi: 10.3321/j.issn:1000-8134.2002.02.014
|
[9] |
MICHAEL T R, YANG B C. On a Hilbert-type integral inequality in the plane relate to the extended Riemann zeta function[J/OL]. Complex Analysis and Operator Theory, (2008-08-10)[2020-03-20]. http://doi.org/10.1007/s11785-018-0830-5.
|
[10] |
KRNIĆ M, VUKOVIĆ P. On a multidimensional version of the Hilbert-type inequality[J]. Analysis Mathematical, 2012, 38: 291-303. doi: 10.1007/s10476-012-0402-2
|
[11] |
钟建华, 陈强. 一个反向和齐次半离散的Hilbert型不等式[J]. 华南师范大学学报(自然科学版), 2013, 45(3): 28-32. http://journal-n.scnu.edu.cn/article/id/3152
ZHONG J H, CHEN Q. A reverse and homogeneous half- discrete Hilbert-type inequality[J]. Journal of South China Normal University(Natural Science Edition), 2013, 45(3): 28-32. http://journal-n.scnu.edu.cn/article/id/3152
|
[12] |
王爱珍, 杨必成. 一个联系指数函数中间变量的全平面Hilbert积分不等式[J]. 兰州理工大学学报, 2019, 45(4): 151-155. doi: 10.3969/j.issn.1673-5196.2019.04.027
WANG A Z, YANG B C. A full-planar Hilbert integral inequality related to middle-variable of exponential function[J]. Journal of Lanzhou of Technology, 2019, 45(4): 151-155. doi: 10.3969/j.issn.1673-5196.2019.04.027
|
[13] |
曾志红, 杨必成. 关于一个参量化的全平面Hilbert积分不等式[J]. 华南师范大学学报(自然科学版), 2017, 49(5): 100-103. http://journal-n.scnu.edu.cn/article/id/4193
ZENG Z H, YANG B C. A parametric Hilbert's integral inequality in the whole plane[J]. Journal of South China Normal University(Natural Science Edition), 2017, 49(5): 100-103. http://journal-n.scnu.edu.cn/article/id/4193
|
[14] |
洪勇, 温雅敏. 齐次核的Hilbert型级数不等式取最佳常数因子的充分必要条件[J]. 数学年刊, 2016, 37A(3): 329-336.
HONG Y, WEN Y M. A necessary and sufficient condition of that Hilbert type series inequality with homogeneous kernel has the best constant factor[J]. Chinese Annals of Mathematics, 2016, 37A(3): 329-336.
|
1. |
洪勇. 加指数权Lebesgue空间超齐次核积分算子搭配参数最佳的充要条件. 浙江大学学报(理学版). 2024(05): 586-592 .
![]() |